10. Autyzm a epilepsja

Ogólnie o napadach

Neurony w mózgu porozumiewają się poprzez przesyłanie do siebie sygnałów elektrycznych.

Gdy ta elektroaktywność w mózgu jest nieprawidłowa, zmieniona – powstają napady. Czasem są to konwulsje całego ciała połączone z utratą przytomności. Czasem jednak są to krótkie, nawet kilkusekundowe momenty „zawieszenia się”, utraty łączności z otoczeniem. Po takim momencie osoba nie pamięta, że miała taki epizod.

Nie zawsze taki napad oznacza epilepsję. Może być to też oznaka innych problemów, np. wysokiej gorączki, niskiego poziomu cukru, różnych chorób zakaźnych, udaru mózgowego, problemów z krążeniem, niektórych infekcji pasożytniczych.

Rozróżniamy następujące rodzaje napadów:

  • uogólnione – konwulsje całego ciała
  • “z zawieszenia” – na zewnątrz osoba wygląda, jakby zapatrzyła się w przestrzeń, nie reaguje na bodźce
  • miokloniczne – drgawki mięśni
  • częściowe – gdy elektroaktywność zaburzona jest tylko w jednym obszarze mózgu – z czasem mogą przerodzić się w uogólnione

Dzieci z autyzmem często mają zaburzenia koncentracji, momenty “zawieszenia”. Ważne, aby zdiagnozować, czy są to napady spowodowane niewłaściwą elektroaktywnością w mózgu, czy też są to zaburzenia uwagi. Warto zbadać tę kwestię, gdy dziecko mimo godzin terapii nie czyni żadnych postępów, również warto to zbadać u dzieci nie mówiących. Należy w tym celu wykonać EEG – najlepiej w fazie zasypiania i snu. Długi zapis wykonany, gdy dziecko nie rusza się i jest spokojne pozwoli na ocenę, czy występują zaburzenia i o jakim charakterze.

Dr Lawrence Wilson wymienia następujące przyczyny napadów:
- nagłe infekcje połączone z wysoką gorączką
- przewlekłe infekcje wirusowe, pasożytnicze, bakteryjne, grzybiczne które powodują podrażnienie mózgu i utratę równowagi pierwiastkowej w organizmie
- zatrucie metalami ciężkimi – zdaniem dr Wilsona jest to częsta przyczyna napadów. Organizm może być zatruty rtęcią, miedzią (te dwa pierwiastki najlepiej przewodzą elektryczność), ale też żelazem, aluminium, manganem.
Na rolę metali ciężkich w etiologii napadów wskazują badania naukowe. Zdaniem TC Theoharides i B. Zhanga, pojawienie się napadów może być oznaką stanu neurozapalnego spowodowanego aktywacją komórek tucznych w mózgu – które aktywowane są przez rtęć, jak wynika z tych badań. Potwierdza to fakt, że u szczurów zatrutych rtęcią zaobserwowano podatność na zmiany napadowe.
- niedobory składników odżywczych – niskie poziomu cynku, selenu lub innych ważnych minerałów. W szczególności wapń, magnez i cynk nazywane „minerałami usypiającymi” mają kojące, uspokajające działanie na układ nerwowy. U podłoża napadów może leżeć też deficyt witaminy D, kwasów omega 3.
- zmiany w poziomie cukru we krwi
- zbyt zasadowe pH, co może wiązać się z tym, że w zbyt zasadowym pH mniej biodostępny jest wapń, magnez i cynk
- różnego rodzaju stres
- alergie pokarmowe i wrażliwość na chemię przyjmowaną w pokarmie. Głównymi „winowajcami” mogą być:

  • Zboża – pszenica, jęczmień i owies są zbożami o największej zawartości glutaminy i powinno się ich przy epilepsji unikać
  • Nabiał – mleko krowie ma wiele glutaminy (najwięcej ser typu parmezan)
  • Fasola, soja, soczewica mają również wiele glutaminy. Pewne jej ilości ma też dynia i słonecznik
  • Bardzo wiele glutaminy mają orzeszki ziemne, pistacje. Lepiej ograniczać ilość tych orzechów (również migdały mają glutaminę, choć nie tak wiele)
  • Napoje dietetyczne zawierają podrażniający mózg aspartam – unikaj wszystkich produktów z tym składnikiem
  • Zupy i sosy w proszku zawierają glutaminian sodu – unikaj wszystkich produktów z tym składnikiem

- inne – guzy, udary, przyjmowanie niektórych leków itp.

Jak leczyć napady?

Z całą pewnością nie można lekceważyć niczego, co mogłoby sugerować nieprawidłową elektroaktywność w mózgu i natychmiast udać się do neurologa. Jeżeli wystąpią zmiany napadowe, dziecko dostanie jeden z leków – powinien być dostosowany do typów napadu. Oto tabelka z lekami (za www.tacanow.org):

LekUogólnione„Zawieszenia”MiokloniczneCzęściowe
Carbamazapine (Tegretol®)++--+
Clonazepate-++++
Clonazapam (Klonopin®)++++
Diazapam (Valium®)+-++
Ethosuximide-++--
Felbamate (Felbatol®)+++-+
Gabapentin (Neurontin®)+--+
Lamotrigine (Lamictal®)+++++
Oxcarbazepine (Trileptal®)++--+
Phenobarbital++-++
Phenytoin (Dilantin®)++---
Primidone+-?+
Topiramate (Topamax®)+?++
Tiagabine (Gabitril®)+??+
Valproate (Depokote®)++++++++
Zonisamide+?++

Wskazówki dietetyczne (za dr L. Wilsonem):

- pij dużo wody
- jedz dużo gotowanych warzyw i mięsa. Diety wegetariańskie zawierają zwykle dużo nabiału i soi, mogą też być ubogie w cynk a bogate w miedź
- ze zbóż najlepsze są ryż i kukurydza,
- z uwagi na wysoką zawartość cukru nie polecane są owoce
- dieta epileptyka nie wyklucza jajek i koziego mleka, unikać należy produktów z krowiego mleka
- zadbaj o właściwą ilość witaminy D w diecie

9. Notatki z międzynarodowej konferencji nt. autyzmu – Berlin, 2011 rok

Organizator: Autismus ursachengerecht behandeln e.V.

Termin:8-9 października 2011 r.

Prelegenci: dr William Shaw (Great Plains, USA), dr Leiticia Dominguez-Shaw (LINCA, USA), Lori Knowles (matka dziecka wyleczonego z autyzmu, USA), dr Brigitte Esser (lekarz DAN, Niemcy)

Notatki z poszczególnych wykładów:

1. Dr William Shaw, Wieloczynnikowe podłoże autyzmu, część 1: predyspozycje genetyczne, odmienności mikroflory, szczawiany, alergie pokarmowe i środowiskowe, deficyty litu

Na początku wykładu dr Shaw zaznaczył, że istnieją dwa poglądy na temat autyzmu:  -  – pierwszy z nich postrzega autyzm jako zaburzenie wyłącznie genetyczne, a w konsekwencji jedyne, co można w takim wypadku zrobić to zastosować terapie behawioralną i neurofarmaceutyki
- drugi z nich widzi autyzm jako zaburzenie systemowe, gdzie mózg i inne organy są dotknięte obciążeniami pochodzącymi z ekspozycji na toksyny, niedobory żywieniowe, obciążenia pochodzące ze szczepionek, dysfunkcje układu pokarmowego, alergie pokarmowe, przy czym oczywiście istnieje podatność genetyczna na tego typu obciążenia

W Great Plains Laboratory przebadano dokładnie 200.000 dzieci z autyzmem i jedynie w 12 przypadkach autyzm spowodowały zaburzenia genetyczne, więc z pewnością NIE JEST TO pierwszoplanowa przyczyna autyzmu. Przyjmując zatem drugi z ww. poglądów należy:
- usunąć toksyczne chemikalia z organizmu dziecka
- przywrócić prawidłowy stan odżywienia organizmu (co wymaga czasem podania dużych ilości substancji odżywczych)
- przywrócić „dobrą” florę jelitową
- usunąć szkodliwe pokarmy
- a przy tym oczywiście stosować terapię, której potrzeby dr Shaw nie neguje.

W pierwszej części wykładu dr Shaw skupił się na dysbiozie jelit, nadmiarze szczawianów oraz alergiach pokarmowych i wziewnych.

Odnośnie dysbiozy jelit, to spowodowana jest ona zespołem cieknącego jelita, który często objawia się słabym apetytem u dzieci albo preferowaniem przez nie płynnego pożywienia, gdyż pokarm stały drażni śluzówkę jelita (brak apetytu może być też objawem niedoboru cynku). Dr Shaw badając mocz dzieci z autyzmem stwierdził u niemal każdego z nich (mówił o ok. 80%) podwyższone następujące kwasy (nie będę ich tłumaczyć, bo w Organic Acid Test też są po angielsku i po co robić zamieszanie z tłumaczeniem): citramalic, 5-hydroxymethyl-2-furoic, 3-oxoglutaric, furn-2,5-dicarbolixyc, tartaric, furancarbonylglicyne i arabinose. Po podaniu leków przeciwgrzybicznych te wskaźniki znacznie się zmniejszyły (pokazywane były dokładne tabelki odnośnie każdego z etapów tej terapii), zwiększył się jedynie 3-hydroxypropionic, co zaciekawiło dr Shawa i jego zespół. Dotarli do artykułu z prasy medycznej z 1956 roku, gdzie wykazano, że pacjenci chorzy psychicznie (z różnego rodzaju chorobami) wydzielali w moczu ogromne ilości 3-hydroxypropionic (HPHPA). Badania prowadzone w Great Plains wykazały, że jest to metabolit bakterii Clostridia. Dr Shaw pokazał ciekawy wykres, z którego wynikało, że Clostridia produkuje substancję analogiczną do dopaminy, przez co uniemożliwia przemianę dopaminy w norepinefrynę, stąd u tak wielu dzieci z autyzmem nierównowaga HVA do VMA (HVA to metabolit dopaminy, a VMA to metabolit epinefryny, powinny się równoważyć, gdy jest uniemożliwiona ta przemiana, to w organizmie jest za wysokie HVA i za dużo dopaminy). Dr Shaw zwrócił uwagę na to, że leki stosowane zwyczajowo w autyzmie – risperidol, haloperol – służą obniżeniu dopaminy i większość osób leczonych w ten sposób na pewno odnotowałoby większą poprawę dzięki leczeniu Clostridii niż podawaniu tych leków.
Istnieje około 100 gatunków Clostridii. Walka z nią jest ciężka i nawet wybicie clostridii nie przynosi długotrwałych rezultatów, o ile nie są podawane duże dawki probiotyków, gdyż zarodniki clostridii zasiedlają jelito tuż po zaprzestaniu podawania antybiotyków. Clostridia umiera podczas ekspozycji na tlen, w jej leczeniu pomocne są duże dawki Lactobacillus GG (czyli Dicoflor albo Culturelle), Tricycline, Metronidazol (10-14 dni), Vancomycin (10-14 dni), Saccharomycces boulardii. Co bardzo ciekawe, HPHPA wstrzyknięte szczurom spowodowało u nich stereotypowe zachowania – machanie głową, otrzepywanie całego ciała, hiperaktywność, a do tego przez ponad 80% czasu chodziły do tyłu zamiast do przodu. Jeżeli zatem dziecko robi wszystko odwrotnie, „nie słucha się”, „jest niegrzeczne” – można podejrzewać clostridię. Nadto produkowany przez clostridię phenylpropionic acid zmienia receptory opioidowe w mózgu tak, że mózg nie może ich wyłączyć i osoba nie reaguje dobrze na świat zewnętrzny.

Następnie omówiono krótko kwestię wysokich szczawianów. Szczawiany to substancja, z których zbudowane są kamienie w nerkach, ale kryształki szczawianów mogą osadzać się w sercu, mózgu, oku (pokazywano zdjęcia szczawianów wbudowanych w tkankę ciała i wyglądało to okropnie). Są to jakby małe ostre kryształki. Wiążą się z metalami ciężkimi i mają też wpływ na odkładanie tych metali w tkankach ciała. Jeżeli występuje problem szczawianów, konieczna jest dieta niskoszczawianowa (wykluczamy soję, szpinak, wszystkie orzechy, cytrynę, rabarbar, słodkie ziemniaki, pieprz, czekoladę, por, kawę rozpuszczalną, czarną herbatę), podawanie dużych dawek B6 (100 mg), wapnia (1000 mg w mniejszych dawkach, przed posiłkami), a także probiotyków VSL3, które mają zdolności do rozbijania szczawianów. O szczawianach było jeszcze podczas późniejszych wykładów.

Nietolerancje pokarmowe dr Shaw omówił krótko, skupiając się na mleku i jego szkodliwości – badania wykazały, że młodociani przestępcy piją więcej mleka, a gdy odstawiono mleko dzieciakom w zakładach poprawczych, odnotowano znaczne uspokojenie się dzieci (były dwa badania, które to wykazały, spisałam sobie autorów i miejsca publikacji bo ciekawe).

Podsumowując – w Great Plains Lab po przebadaniu 200.000 (mniej więcej oczywiście) dzieci z autyzmem stwierdzono, że nietolerancja glutenu i kazeiny dotyczy 90% z nich, candida – 70%, clostridia – 50%, problem ze szczawianami – 80%. Stąd te tematy właśnie poruszył dr Shaw w pierwszym wystąpieniu.

2. Dr Leticia Dominguez – Shaw, Żywienie i jego związek z zaburzeniami zachowania i uczenia się u dzieci

Dr Leticia Dominguez-Shaw (szefowa LINCA – ogólnoamerykańskiej organizacji zajmującej się żywieniem dzieci autystycznych, prywatnie żona dr Shaw, mają córkę z autyzmem i zespołem Retta) zaczęła od wykładu na temat peptydów, czyli kazomorfiny i gliadomorfiny i ich opioidalnych efektów. Dziecko uzależnia się od tych peptydów, dlatego tak bardzo chce spożywać pokarmy z glutenem i kazeiną i niemal wszystkie osoby które przychodzą po pomoc do LINCA twierdzą, że nie mogą wprowadzić diety, bo ich dzieci jedzą tylko bułki i mleko. Robią to dlatego, bo są od nich uzależnione. Efekty działań peptydów dotykają działania wszystkich zmysłów:
- dotyk – dyskomfort przy myciu zębów i włosów, też przy czesaniu włosów i obcinaniu paznokci, nadwrażliwość na metki przy ubraniach, chodzenie na palcach, autoagresja, wybieranie ubioru nieodpowiedniego do temperatury
- słuch – nadwrażliwość, zatykanie uszu rękami, napady histerii w głośnych miejscach, ale: słuchanie radia czy TV przy dużej głośności
- węch/smak – dzieci wąchają wszystko, liżą swoje ręce, wkładają przedmioty do buzi, nie drażnią ich brzydkie zapachy, niektóre powodują u nich histerie, jedzą tylko określone rodzaje pożywienia
- wzrok – nadwrażliwość, częste patrzenie przez okno, oglądanie TV bardzo blisko
Dieta bezglutenowa i bezmleczna polega na tym, że:
- odstawiamy mleko (też kozie) i wszystkie pochodne mleka, zastępując je mlekiem z migdałów, orzechów czy ryżu albo kokosa
- odstawiamy gluten (i soję) i redukujemy węglowodany złożone
- podajemy: kukurydzę, ryż, amarantu, cassavę, sorghum, substytuty mleka, ziemniaki, kakao albo karob, mięso, warzywa, owoce, orzechy, stewię, xylitol i syrop z agawy (z tych trzech najbardziej polecana była stewia)
- uwzględniamy indywidualne alergie żywieniowe – najlepiej zbadać je PRZED przejściem na dietę i uwzględnić przy planowaniu diety, żeby nie trzeba było po zbadaniu alergii po raz kolejny „odbierać” dziecku jakieś pożywienie, ale żeby zrobić to raz a dobrze. Na dietę powinna przejść cała rodzina, każdy skorzysta, a poza tym wszyscy mamy podobne podłoże genetyczne jak dziecko z autyzmem, więc możemy mieć podobne problemy z żywieniem. Trzeba zawsze mieć pod ręką bezglutenowe ciastka, pieczywo, pizzę itp – szczególnie przy wizytach u znajomych. Trzeba dobrze wyjaśnić kwestię diety rodzeństwu.
Ważnym jest ograniczenie skrobii w pożywieniu (w zasadzie to jej wyeliminowanie). Ukryte źródła skrobii to:
- skrobia modyfikowana
- hydrolizowane białko warzywne
- miso
- sos teriyaki
- skrobia w suplementach, które podajemy dziecku
- barwnik karmelowy
- ocet
- dekstryny
- zupy w paczce czy puszce
- trzeba sprawdzić czy do mleka ryżowego nie dodali jęczmienia
Ważne jest unikanie sytuacji, gdy przygotowujemy posiłki dziecku z użyciem tych samych naczyń i sztućców co posiłku z zawartością glutenu – nawet małe okruchy na desce do krojenia czy na łyżce albo nożu mogą być problemem.
Warto używać enzymów trawiennych w dawce zależnej od ilości pożywienia (o enzymach było też w dalszych wykładach).
Reguła 3xP: aby zacząć dietę trzeba być: przekonanym (na 100%), dobrze poinformowanym (trzeba przeczytać wszystko co się da i przebadać dziecko na nietolerancje pokarmowe, żeby wiedzieć od początku co eliminujemy) i przygotowanym (kupujemy wszystkie produkty, zakładamy notatnik gdzie opisujemy, co dziecko zjadło i jak się zachowywało w danym dniu).
Barwniki spożywcze – używamy tylko naturalnych: kurkuma, chlorofil, ryboflawina a nie sztucznych, które dezaktywują niektóre enzymy (szczególnie amylazę i trypsynę) i zwielokrotniają szkodliwy efekt peptydów opioidalnych.
KONIECZNIE eliminujemy glutaminian sodu, jest bardzo neurotoksyczny.
Na początku wprowadzenia diety możliwy jest krótki regres, pogorszenie zachowania (jak na odwyku), gdy trwa on dłużej niż 3 tygodnie – szukamy możliwych alergenów (eliminujemy np. kukurydzę, ryż) – dlatego lepiej zrobić test na nietolerancje pokarmowe wcześniej, żeby od razu wyeliminować wszystko. Najlepiej wszystko zapisywać i nakręcać filmy z udziałem dziecka – regularnie. Zacznij dodawać nowe potrawy zanim wyeliminujesz te szkodliwe (np. mleko – zacznij dolewać mleko ryżowe do normalnego najpierw w proporcji np. 1:2, potem 1:1, potem 2:1 a ostatecznie podawaj samo ryżowe). Planuj posiłki.
Dr Dominguez-Shaw zachęcała również do zakupu organicznego jedzenia. Podała listę pokarmów najbardziej zanieczyszczonych pestycydami: jabłka, brzoskwinie, seler, jagody, sałata, gruszki, szpinak, ziemniaki, papryka, nektarynki i najmniej: cebula, awokado, kiwi, kapusta, brokuły, cukinia, szparagi, mango, ananas, kukurydza – jeśli nie stać cię na kupowanie samych organicznych owoców i warzyw, wybieraj produkty z drugiej listy. Warto też skontaktować się z producentem organicznych warzyw i owoców i dokładnie wypytać, jak uprawia swoje rośliny i czy na pewno nie stosuje żadnych pestycydów i tego typu środków.

3.Dr William Shaw, Wieloczynnikowe podłoże autyzmu, część 2: niedobór cholesterolu i metale ciężkie

1.   CHOLESTEROLIstnieje taki zespół genetyczny nazwany SLOS, który charakteryzuje się tym, że chory ma bardzo niski cholesterol (niższy niż 4.14 mmol/l). Pacjenci mają przy tym objawy ze spektrum autyzmu: opóźniony rozwój mowy, zaburzenia behawioralne, nadwrażliwość na światło. Charakterystyczne przy tym zespole jest to, że drugi i trzeci palec u stopy jest zrośnięty w kształt litery Y. Charakterystyczne są również rysy twarzy – krótki nos, mały podbródek, fałdy wokół oczu.
Naukowcy z Great Plains Lab poszli tym tropem i stwierdzili, że około 60% dzieci z autyzmem ma bardzo niski cholesterol (niższy niż 4.14 mmol/l) – ten odsetek w porównaniu z grupą kontrolną jest aż 7 razy większy u dzieci z autyzmem.
Każdy rodzaj pożywienia (tłuszcze, białka, węglowodany) transformuje się w organizmie w acetyl koenzym A, następnie w lanosterol, 7-dehydrocholesterol, a na koniec w cholesterol. Cholesterol jest niezbędny dla wytwarzania żółci w wątrobie, dla trawienia tłuszczy i absorpcji witamin. Jest niezbędny do produkcji wszystkich hormonów (estrogenu, testosterony, kortyzolu, aldosteronu). Ma jednak też duży wpływ na mózg:
- aktywuje proteinę-G niezbędną dla działania receptoru serotoninowego 1a
- aktywuje receptory oksytocynowe – oksytocyna odpowiada za potrzebę połączenia się z drugim człowiekiem, za miłość i przyjaźń, za więzi międzyludzkie, za chęć bycia z innymi – dlatego wydzielana jest przez rodziców po urodzeniu dziecka i również podczas seksu, badania C. Modahla z 1998 roku wykazały, że poziom oksytocyny u autystów jest znacznie niższy. Oksytocyna dostępna jest w sprayu (w Europie na receptę) albo w tabletkach zażywanych raz dziennie (produkuje ją Belmar Pharmacy w USA). Dr Shaw z ciekawości raz spróbował ją zażyć i potwierdza, że zażycie oksytocyny powoduje chęć bycia z innymi, większe pragnienie towarzystwa, łatwość w kontaktach z innymi ludźmi – 30 niezależnych badań potwierdziło, że podawanie oksytocyny prowadzi do trwałych pozytywnych zmian w mózgu w obszarach odpowiedzialnych za kontakty społeczne, co potwierdziły obrazy rezonansu magnetycznego. Receptory oksytocynowe są nieaktywne bez cholesterolu
- aktywuje proteinę nazwaną bardzo zabawnie, bo na cześć postaci z gry komputerowej – proteinę „sonic hedgehog” (SHH) – odpowiada za pamięć, kojarzenie i ogólnie lepszą pracę mózgu
- cholesterol jest składnikiem osłonki mielinowej na neuronach
Dieta naszych dzieci jest uboga w cholesterol, zwykle nie jedzą za dużo smalcu czy jajek (najczęściej są na nie uczulone). Jest cholesterol w suplemencie, wytworzony z owczej wełny, nazywa się to „Sonic Cholesterol” i jest produkowany przez New Beginnings Nutritional, jest do nabycia choćby w cenaverde.
Jak obliczyć dawkę cholesterolu? Badamy cholesterol dziecka (oczywiście na czczo), odejmujemy tę wartość (podaną w mmol/l) od 4.14, wynik dzielimy przez 0,26. Powinna wyjść cyfra między 1-7 i to jest ilość jajek, jakie trzeba dziennie zjeść aby podwyższyć cholesterol do właściwego poziomu. Jedna kapsułka „Sonic Cholesterol” odpowiada ilości cholesterolu w 1 jajku. Po 3 miesiącach trzeba powtórzyć badanie. U dzieci, którym podawano cholesterol, już odnotowano znaczącą poprawę w kojarzeniu, myśleniu i kontaktach społecznych2.   ZATRUCIE METALAMI CIĘŻKIMI

Już trochę nie starczyło na to czasu, ale generalnie najczulszym testem na zatrucie metalami wg dr Shaw jest badanie włosa, negatywnie wypowiadał się o jakości badania uroporfiryn wykonywanego przez laboratorium we Francji (wprost powiedział, ze są to badania niedokładne, próbki nie są właściwie zabezpieczone i jest to badanie kompletnie niewiarygodne) i powiedział, że chelatacja jest wyjątkowo bezpieczną interwencją o ile przeprowadzana we właściwy sposób.

3.   NIEDOBÓR LITU

Na to niestety też nie starczyło czasu, ale pokazywano ciekawe wykresy – mniej autystów było w czasach, gdy pito wodę z kranu zawierającą lit, wraz ze wzrostem spożycia wody w butelkach wzrosła ilość autystów. Bardzo dobre efekty przynosi suplementacja litem u osób dorosłych chorych na choroby neurodegeneracyjne – podawanie 1000 mcg litu dziennie osobie o wadze 70 kg przywraca funkcje uszkodzonych komórek układu nerwowego. Dla dziecka o wadze 17,5 kg dawka litu na dzień to 250 mcg.

4. Lori Knowles, Droga Daniela z autyzmu – opowieść matki

Mały Daniel Knowles został zdiagnozowany jako autysta w wieku 2,5 roku. Matka pokazywała na konferencji filmy – Daniel nie reagował na świat zewnętrzny, bawił się stereotypowo, ślinił się, miał zaburzenia sensoryczne. Pierwsza zmiana była po wprowadzeniu diety bezglutenowej i bezkazeinowej, następnie wprowadzono suplementy mające na celu:
- wyrównanie niedoborów żywieniowych
- lepsze wchłanianie składników odżywczych
- poprawę metabolizmu
- pomoc w detoksykacji
- niwelowanie skutków stresu oksydacyjnego
- poprawę ogólnego stanu zdrowia
Lori stosowała witaminy, minerały, antyoksydanty, kwasy tłuszczowe (olej z wątroby dorsza), probiotyki i enzymy – szerzej mówiła o nich w swoim drugim wykładzie.
Daniel miał wszelkie objawy niedoboru kwasów tłuszczowych (suchą skórę i włosy, ciągłe pragnienie, niekontrolowanie potrzeb fizjologicznych, przewlekły katar, łupież, cienkie paznokcie, egzemy, nadaktywność, częste oddawanie moczu) i olej z wątroby dorsza przyniósł ogromny skutek.    Miał też oczywiście przerost bakterii i grzybów
Interwencją, która przyniosła największy skutek i wyleczenie dziecka była chelatacja według protokołu Cutlera. Lori podawała DMSA co 4 godziny przez 3 dni, potem było 11 dni przerwy. Było coś co nazwała „cudem co drugiego wtorku” – w każdy wtorek po chelatacji był nowy ogromny postęp u Daniela. UWAGA – zaczęła i skończyła na dawce 25 mg (!) nie zwiększając jej ani nie zmniejszając. Nie stosowała ALA. Pokazywała filmy z aktualnym zachowaniem syna – kompletnie normalne dziecko. Nie jest już na diecie (był na niej 10 lat), bierze podstawowe suplementy (multiwitaminę, probiotyki, tran) w dawkach jak dla normalnego dziecka w jego wieku. Lori mówiła, że problemy zdrowotne u autystów można przyrównać do pinezek na których dziecko siedzi – każdy problem to jakby jedna pinezka. Dlatego nigdy w zasadzie nie wystarczy jedna interwencja – wprowadza dietę i wyjmujesz jakby jedną pinezkę, ale zostaje ich kilka i dziecko nadal ma dyskomfort, wprowadzasz kwasy tłuszczowe, suplementy ale nadal coś zostaje i dopiero jak wprowadzisz tę ostatnią interwencję (w ich przypadku chelatację) – dziecko zdrowieje. Droga Daniela z autyzmu trwała 4 lata, w wieku 6,5 roku został uznany za zdrowe dziecko. Lori podkreślała, że nie zawsze pełne wyleczenie jest możliwe ale warto poprawić jakość życia dziecka maksymalnie jak się da. To samo mówiła Leticia – jej córka z zespołem Retta nigdy nie będzie w pełni zdrowa, ale dziewczynki z tym zespołem zwykle nie poruszają się inaczej jak na wózku, ich jakość życia jest słaba – a jej córka ma 21 lat, studiuje, biega, ćwiczy – pokazywała jej zdjęcia – i żyje bardzo fajnym życiem.
Aby do tego doprowadzić rodzic musi być – zdeterminowany, w ciągły sposób szukać, czytać, badać i doinformowywać się i zadbać o siebie (o właściwą dietę, suplementację własnego organizmu, o własne zdrowie).

 5. Brigitte Esser – Biomedyczne podłoże autyzmuDr Esser krótko przedstawiła, w jaki sposób zbiera informacje pozwalające jej na określenie kierunków leczenia dziecka:
- wywiad obejmujący: historię chorób w rodzinie (alergie, choroby autoimmunologiczne itd.), okres ciąży (leki, szczepienia, długie podróże, leczenie stomatologiczne, ekspozycja na toksyny, stres, dieta, choroby), poród (sposób porodu, czy była narkoza albo leki, czy w terminie, stan dziecka, leczenie dziecka), okres wczesnodziecięcy (karmienie piersią, szczepienia, nabywanie umiejętności komunikacyjnych, kontakty społeczne, problemy z układem pokarmowym, infekcje, sen, nietolerancje pokarmowe, zaburzenia sensoryczne, problemy z poruszaniem się)
- objawy u dziecka dotyczące następujących kwestii:
- przewód pokarmowy – śluz w kale, zapach, kolor, konsystencja, niestrawione resztki pokarmu w kale, zaburzenia snu, krzyki bez powodu, samouszkodzenia, częste kładzenie się na brzuchu, dolegliwości występują zwykle po jedzeniu
- system odpornościowy – częste infekcje albo ich brak, infekcje przewodu pokarmowego, astma, egzema, alergie
- autonomiczny system nerwowy – zwiększone tętno i ciśnienie krwi, adaptacja wzroku do światła, poszerzone źrenice, pocenie się, sucha skóra i oczy, nagłe czerwienienie się, zaburzenia temperatury, zaburzone odczuwanie bólu, zaburzenia snu, wzdęcia, biegunki, zatwardzenia
- obciążenie metalami  ciężkimi – bóle głowy, bezsenność, hiperaktywność, stymulacje, obniżone napięcie mięśniowe, alergie, zatwardzenia
- niedobory minerałów – zły apetyt, zaburzenia smaku, powolne leczenie ran, częste infekcje, lekki sen, biegunki, wypadanie włosów, trądzik, słabe paznokcie – to są objawy niedoboru cynku (o wszystkich minerałach nie było czasu mówić)
- badanie dziecka w celu stwierdzenia takich objawów jak: słaby wzrost, wzdęcia, zredukowana masa mięśniowa, egzema, łupież, stan zapalny kącików ust, stan zapalny powiek, grzybice skóry, czerwona skóra wokół odbytu, grzybica języka i paznokci, popękana skóra opuszków palców (możliwe zakażenie streptococcus), cienie pod oczami (problemy z wątrobą, alergie), skolioza, zrośnięte palce u stóp (syndrom SLOS), cechy twarzy pod kątem kruchego X
- diagnostyka laboratoryjna – morfologia z rozmazem, badanie wątroby i nerek, poziom elektrolitów, organic acid test, test na peptydy, całościowe badanie kału, nietolerancje pokarmowe, poziom aminokwasów w moczu, analiza włosa

6. Dr William Shaw – Możliwości diagnostyczne przy autyzmie i podobnych zaburzeniach

Dr Shaw przedstawił co może być odpowiedzialne za różne objawy u autystów. Wszystkie te parametry można zbadać w organic acid test oraz przez inne testy (profil cholesterolowy, badanie włosa, badanie ferrytyny, kompleksowe badanie kału, nietolerancje pokarmowe, aminokwasy, kwasy tłuszczowe, przeciwciała na strep, poziom witaminy D):
- zaburzenia snu – niedobór melatoniny lub żelaza
- ból oczu, częste dotykanie oczu – ciężki niedobór wapnia (szczawiany tworzą się w oczach)
- nadaktywność, głupawi – candida, zatrucie ołowiem
- dziecko wyobcowane, brak reakcji na otoczenie – opiaty z mleka i glutenu
- autoagresja – ból w przewodzie pokarmowym
- częste wydalanie małych ilości moczu, problem z odpieluchowaniem – nadmierny poziom szczawianów
- kładzenie się na brzuchu – dyskomfort w przewodzie pokarmowym
- chodzenie na palcach – możliwy problem ze szczawianami, niedobór selenu
- ślinienie się – objaw zatrucia rtęcią
- agresywne zachowanie – przerost clostridii
- patrzenie pod kątem – niedobór witaminy A
- zaburzenie równowagi cynku i miedzi – objaw zatrucia rtęcią (duża ilość wolnej miedzi i żelaza niszczy witaminę C)
- nadmierne picie i sikanie, sucha skóra i włosy, łupież, małe krostki na udach i ramionach – niedobór kwasów tłuszczowych, dzieci z autyzmem mają za mało kwasów omega-3 (średnio o 20% mniej niż zdrowi rówieśnicy)
- halucynacje wzrokowe – nadmiar kwasów tłuszczowych (aby temu zapobiec i aby je organizm właściwie przyswoił, kwasy tłuszczowe podajemy zawsze z 250-500 mg karnityny)
- zachowania kompulsywno-obsesyjne – zespół PANDAS czyli zakażenie bakteriami Strep – jest u 44,8% autystów, bada się nie tylko odczyn ASO ale też antiDNAseB

Dr Shaw podał minimalne dawki minerałów dla dzieci z autyzmem w podziale na grupy wiekowe: 1-4 lat – 800 mg wapnia, 100 mg magnezu, 2,5 mg cynku ; 5-10 lat – 800-1000 mg wapnia, 200 mg magnezu, 5 mg cynku, powyżej 10 lat – 800-1200 mg wapnia, 350-450 mg magnezu, 15 mg cynku. To jest absolutne minimum.
Badanie aminokwasów jest też bardzo przydatne. Pełnią one kluczową rolę przy produkcji energii, metabolizmu tłuszczów i ketonów, z nich tworzą się proteiny i hormony, przekształcane są w cukier/glukozę. W tym kontekście dr Shaw omówił cykl mocznikowy i podał, że grzyby, bakterie, niektóre aminokwasy produkują amoniak, który przemienia się w carbonyl phosphate (też nie będę tłumaczyć bo to są parametry badane w Urinary AminoAcids), a następnie powinno to się w wątrobie w cyklu mocznikowym przekonwertować w mocznik i w ten sposób amoniak zostaje wydalony. Jak coś tu nie gra, to carbonyl phosphate zmienia się w orotic acid i w pyrimidynes. Wskaźnikami tego, że cykl mocznikowy jest zaburzony jest zatem: podwyższony amoniak, orotic acid, pyrimidines jak również alanine i glutamine a obniżony poziom mocznika. Nadmiar amoniaku jest toksyczny i powoduje takie objawy jak:
- tiki, senność (aż do śpiączki i śmierci), objawy psychiczne, anoreksję, schizofrenię
- wolny wzrost, nudności, zaburzenia behawioralne, trudności z percepcją, ból głowy, preferowanie diety wegetariańskiej
Jeżeli w badaniu większość aminokwasów jest podwyższona może to też świadczyć o defekcie nerek i zatruciu metalami ciężkimi. Jeżeli większość jest obniżona – może to świadczyć o słabym trawieniu, niewystarczającej ilości kwasów żołądkowych, małej podaży białka w diecie, złym wchłanianiu, dysbiozie jelit.
Potem dr Shaw krótko przybliżył kwestię kwasu chinolinowego i przestrzegł przed podawaniem dziecku tryptofanu, który karmi bakterie i candidę. Zamiast tego, w celu obniżenia kwasu chinolinowego podajemy B3 i 5HTP. Wysoki kwas chinolinowy świadczy o przestymulowaniu układu odpornościowego, też o wysokim kortyzolu. Pozostałe ekscytotoksyny to glutaminian (glutamate) – wówczas podajemy wysokie dawki B6 i aspartam (aspartate).

7. Brigitte Esser – Toksyczne obciążenie organizmu

- w 1930 roku produkowano 1 mln ton chemikaliów na świecie, teraz jest to 400 mln
- istnieje 100.000 różnych chemikaliów, zbadano dokładnie tylko 4%
- w mleku matki jest około 300 chemicznych substancji
- aktualnie dzieci są dużo bardziej obciążone niż ich rodzice i dziadkowie
- badając cząsteczki kurzu znaleziono w nich: ftalany, bisfenol A, kadm, ołów, rtęć (z żarówek)
- bardzo toksyczne są zabawki na www.bund.net można sprawdzić, co toksycznego jest w zabawkach
- z badań National Academy of Science wynika, że przynajmniej ¼ problemów rozwojowych u dzieci spowodowana jest przez czynniki środowiskowe
- rtęć w morzach znajduje się w ilości od 0.01-10 ug/litr, czyli łącznie jest od 1,38-138 mln ton rtęci w morzach i ta ilość wzrasta co roku nawet o 10%
- dr Esser pokazała co najmniej kilkanaście różnych artykułów, z których wynika to wszystko, spisałam większość autorów, jak będzie coś ciekawego to przetłumaczę
- ogólnie trzeba zadbać o to, aby było mniej chemii wokół dziecka – o tym będzie też mowa później

8. Dr William Shaw, Neurotoksyny środowiskowe: ważny czynnik w etiologii autyzmu i innych chorób przewlekłych

W środowisku aktualnie jest wiele chemikaliów, znajdują się one w: środkach owadobójczych, środkach czyszczących, mydle, plastikach, dywanach, zasłonach, odzieży, roślinach, lekach, pożywieniu, wodzie, powietrzu, przemyśle, środkach grzybobójczych i bakteriobójczych, opakowaniach.
Dr Shaw przypomniał zdarzenie z podawaniem talidomidu kobietom w ciąży – był to środek reklamowany w latach 70. jako bezpieczny środek na mdłości ciążowe (wniosek: nie wierzyć ulotkom produktów). Po jego spożyciu kobiety rodziły dzieci z bardzo zdeformowanymi kończynami. Dr Shaw sądzi, że jest wiele czynników odpowiedzialnych za autyzm u danego dziecka, ale może jeden z tych czynników jest istotniejszy od reszty i można go wyodrębnić.
Dr Shaw postawił hipotezę, że takim czynnikiem może być acetaminofen czyli po naszemu paracetamol. Istnieje wiele prac badawczych, które to potwierdzają. W USA paracetamol podaje się dzieciom często po szczepionkach. Podanie paracetamolu i szczepionki sześciokrotnie zwiększyło ryzyko wystąpienia autyzmu niż podanie samej szczepionki, co wynika z badań. W Kalifornii od lat 50. odnotowano tylko 4 takie lata kiedy ilość diagnoz autyzmu się zmniejszyła – pierwsze takie załamanie było gdy wprowadzono na paracetamolu ostrzeżenia, że nie jest bezpieczny ; drugie – gdy odkryto zespoł Reye’sa czyli przypadki zgonów dzieci po podaniu aspiryny ; trzecie i czwarte – gdy w latach 80. w USA były masowe morderstwa z wykorzystaniem kapsułek aspiryny do których morderca wsypał cyjanek i znacznie spadła sprzedaż aspiryny. Zdaniem badaczy (Homle, Fischer) paracetamol ma też taki efekt, że jakby kontruje działanie szczepionki i sprawia, że wirus zostaje w organizmie.
Naukowa podstawa tej hipotezy jest taka, że acetaminofen może być wydalony z organizmu na parę sposobów: drogą glukuronidacji (niedostępna dla dzieci, nie mają jeszcze takich możliwości), drogą sulfacji (u wielu dzieci z autyzmem są z tym problemy), drogą konwersji w aminofenol i w konsekwencji w substancję kannabinoidalną (dlatego młodzież łyka aspirynę żeby mieć odlot) i ostatecznie – jak droga glukuronidacji i sulfacji jest niedostępna – organizm przekształca acetaminofen w NAPQI – bardzo toksyczną molekułę, która zużywa cały glutation i łączy się z wszystkimi proteinami z grupą sulfhydrylową.
Dr Shaw przytoczył kazus Kuby – jest tam najmniej autystów a najwyższy stopień zaszczepienia dzieci (99% jest zaszczepionych), więc jest to zaprzeczenie tego, że tylko szczepionki odpowiadają za autyzm ALE na Kubie paracetamol jest na receptę i w ogóle trudno dostępny (bo tam generalnie puste półki w sklepach są) i może stąd taki efekt.
Paracetamol to lek, który wg licznych badań zwiększa ryzyko astmy, AZS, raka, a zażywany podczas ciąży uszkadza wątrobę dziecka. Zmniejsza ilość testosteronu u mężczyzn.
W organic acid test bada się parametr 5-Oxoproline czyli inaczej pyroglutamic acid – jak jest podwyższony to oznacza, że cały glutation organizmu został zużyty, jest to wskaźnik stresu metabolicznego. Może to być wskaźnik zatrucia acetaminofenem.

Bardzo toksyczne są pyretryny zawarte w szamponach dla zwierząt – ekspozycja na pyretryny szczególnie w 2 trymestrze ciąży (wystarczy umycie psa w takim szamponie) dwukrotnie zwiększa ryzyko autyzmu u dziecka. BARDZO toksyczne są pestycydy i są badania na temat zatrucia dzieci z CZR i ADHD pestycydami. Ekspozycja na organochloryny podczas ciąży siedmiokrotnie zwiększa ryzyko autyzmu u dziecka!
Co robić? Wyeliminować całkowicie perfumy, wody kolońskie, dezodoranty i wszystkie kosmetyki z metalami ciężkimi, używać szarego mydła (najgorsze są mydła antybakteryjne, najwięcej chemii), używać ekologicznych środków czyszczenia (orzechy do prania itp), zdejmować ubranie z pracy przed wejściem do domu, nie używać pestycydów.

9. Dr Leticia Dominguez-Shaw, Dieta niskoszczawianowa, SCD i inne specyficzne diety stosowane w leczeniu autyzmu

SCD – special carbohydrates diet:
- usuwamy z pożywienia dwucukry i wielocukry\
- pozostają cukry proste, które są na tyle małe że przechodzą przez nieszczelne jelito i nie karmią grzyba ani bakterii
- podajemy mięso (nie w formie wędlin czy parówek), domowej produkcji jogurt (na diecie bezkazeinowej podajemy kefir z wody kokosowej, fermentowane warzywa, do picia kombucha), owoce (ale nie w puszce czy suszone z dodatkiem syropu z kukurydzy), miód, warzywa nie zawierające skrobii, żadnego mleka ani ziaren – ryżu, kukurydzy, ziemniaków też nie podajemy.
Kiedy nie stosować? Jak jest w organic acid test podwyższony orotic acid (jest problem z mocznikiem i nie można dużo protein), oxalic acid (jest problem ze szczawianami i nie wolno owoców), są alergie pokarmowe na ww. produkty.
Dr Dominguez-Shaw zaleciła zacząć od diety bezglutenowej/bezkazeinowej (w USA to jest standardowy pierwszy i niezbędny krok dla autystów) i jeśli jest problem z grzybami powracający przez wiele miesięcy – spróbować SCD.

LOD – dieta niskoszczawianowa
Szczawiany pochodzą z diety, własnego metabolizmu i wytwarzają je też grzyby (głównie aspergillus i candida). Przez nieszczelne jelito szczawiany trafiają do krwi. Warto spożywać cytrynian wapnia przed posiłkiem – rozbija szczawiany. Oznaką problemów ze szczawianami może być popuszczanie moczu, dotykanie genitaliów – powodują one dyskomfort dróg moczowych.
Kiedy zastosować tę dietę? Jak jest w organic acid test wysoki oxalic acid, jak są problemy z drogami moczowymi, też zatwardzenie/biegunki przewlekłe.
Co podawać: VSL3, cytrynian wapnia, witaminę B6, zbadać mocz w kierunku genetycznej hiperoksalurii i wyeliminować jedzenie bogate w szczawiany (listy są na sieci, podawał też te pokarmy dr Shaw w pierwszym wykładzie)

BED – Body Ecology Diet
Jest to dieta przeznaczona do walki z grzybami, spożywa się wiele warzyw, nie łączy mięsa i skrobii w jednym posiłku, podkreśla się rolę jedzenia alkalizującego jelita, trudno ją wprowadzić u niejadków

Dieta Feingolda
- eliminuje się pokarmy z fenolami, sztucznymi barwnikami, salicylatami (jabłka, winogrona, ogórki, pomarańcze, banany), a po 4 tygodniach powoli wprowadza jedno po drugim

Dlaczego dieta może się nie udać?
- jedno z rodziców się nie zgadza
- szkoła/przedszkole nie wspiera rodziny
- lekarze rodzinni nie wspierają wprowadzenia diety
- inni członkowie rodziny nie szanują wskazań dietetycznych
- dieta jest droga
- są ukryte źródła ekspozycji (np. w szamponach jest często pszenica)

10. Lori Knowles – Suplementy w leczeniu autyzmu

1.   Witaminy:
- olej z wątroby dorsza – doskonałe źródło witaminy A, Lori jest fanką tego suplementu
- witamina D – bardzo ważna, najlepiej przyswajalna w formie płynnej, jest neuroochronna, antyzapalna, zapobiega atakom padaczki – dawka 3000-5000 iU dziennie jest niezbędna
- witaminy z grupy B – są w zbożach, których nasze dzieci zwykle nie jedzą, więc trzeba suplementowa tym bardziej  że są zużywane w stresie, oto dawki:
B1, B2 – 10-50 mg
B3 – 20-60 mg
B9 – 400-800 mg
MB12 – 100-300 mcg
Biotyna 15-450 mcg
B5 – 20-80 mg
B6 10-50 mg ALE wysokie dawki B6 dają doskonałe rezultaty, co potwierdza 21 badań w tym 13 z grupą placebo, trzeba zwiększać dawkę B6 o 50 mg (max do 600 mg) dziennie, zwykle dzieciaki doskonale funkcjonują na 150-300 mg, gdy pojawi się hiperaktywność trzeba obniżyć dawkę, do tego koniecznie trzeba dawać magnez 3-4 mg/funt
Co do B12 – w formie MB12 – to doustnie jest bardzo źle przyswajalna i trzeba jej podawać aż 5000 mcg co 1-2 dni, w sprayu do nosa lepiej przyswajalna i wystarczy 1200 mcg co 1-2 dni, najlepiej przyswajalna jest w formie zastrzyków podskórnych.

2.   Minerały
- dzieci z autyzmem mają ekstremalnie niskie poziomy cynku, magnezu i selenu. Oto sugerowane dawki:
Wapń (w formie citrate, chelate, ionic) – 500-1000 mg
Magnez – 150-400 mg
Selen – 50-300 mcg
Cynk (picolinate, chelate, ionic) – 1-2 mg/funt
Chrom – 30-75 mcg
Mangan – 2-5 mg
Jod – 150-150 mcg
Lit – 250-1000 mcg
Objawy niedoborów:
-   cynku: trądzik, apatia, słabe paznokcie, depresja, biegunka, egzema, zmęczenie, opóźniony wzrost, wypadanie włosów, słaba odporność, drażliwość, utrata apetytu, problemy z pamięcią, słabe leczenie ran
-   magnezu: niepokój, zdezorientowanie, hiperaktywność, bezsenność, słabe mięśnie, zła praca serca
-   litu: agresja, huśtawki nastrojów, mózg podatny na neurotoksyny
-   wapń: ból oka, skurcze, halucynacje, depresja, bezsenność drażliwość, zły stan zębów

Formy podawania minerałów: do ssania, proszek, kapsułki, w płynie – 5x lepiej przyswajalny niż inne sposoby i dobry dla osób z problemami jelitowymi, bo jest to forma od razu przyswajalna przez komórki.
Ekstra dawki minerałów są niezbędne przy: chelatacji, stwierdzonych niedoborach, eliminacji nabiału (wapń), suplementacji wysokimi dawkami B6 (dodatkowy magnez), złym apetycie (dodatkowy cynk)
Wapń konkuruje ze wszystkim i zawsze trzeba podawać osobno (i to razem z witaminą D dla optymalnego wchłaniania) – oprócz magnezu (magnez i wapń można a nawet powinno się podawać razem). Również cynk jest taki konkurujący, choć nie w takim stopniu co wapń i też powinno się go podawać oddzielnie.

3.   Antyoksydanty
- stres oksydacyjny spowodowany jest przez zanieczyszczenia środowiskowe, toksyny bakterii i grzybów, stres. U autystów ten stres jest na dużym poziomie, co potwierdzono w licznych badaniach.
- trzeba podawać antyoksydanty kilka razy dziennie, bo szybko się zużywają. Oto dawki:
Witamina C – minimum 1000 mg i dodajemy po 500 mg aż do wystąpienia biegunki (wtedy obniżamy). W 1991 roku przeprowadzono badania i stwierdzono, że u dorosłych i nastolatków podawanie 8000 mg witaminy C dziennie znacznie zmniejszyło objawy autystyczne.
Witamina E (mieszane tokoferole) – 100-400 iU
Witamina A – 1000-3000 iU (dobre źródło to olej z wątroby dorsza)
Pycnogenol – 25-100 mg (badania potwierdziły jego skuteczność w leczeniu ADHD)
Beta Karoten – 5000-50.000 iU
Koenzym Q10 – 50-200 mg
Ekstrakt z pestek winogron, cynk, selen, kurkuma to też antyoksydanty

4.   Niezbędne kwasy tłuszczowe
- z tych kwasów utworzone są membrany komórkowe, ich właściwy poziom umożliwia przepuszczanie sygnałów przez membrany
- omega-3 – niedobór powoduje astmę, egzemę, hiperaktywność, brak koncentracji, depresję, ataki złości. Dobrym źródłem tych kwasów jest olej z wątroby dorsza podawany z jedzeniem (i trzeba się upewnić, żeby był wolny od zanieczyszczeń). Lori odradza olej lniany, bo nie wszystkie dzieci dobrze rozkładają nasiona lnu. Dawka omega-3 to 1-3 g dziennie. Nie podawać z wapniem
- omega-6 zawarta jest w ziarnach, jajkach, drobiu, margarynie, ciastkach. W diecie przeciętnego człowieka jest tego mniej więcej 20-40 razy za dużo, ale nasze dzieci mogą mieć niedobór, Trzeba zatem podawać olej z wiesiołka tak, aby dziecko dostawało 200-800 mg GLA dziennie

5.   Probiotyki
Ważne, żeby dawać je przez długi okres czasu (bo nie ma widocznych efektów od razu), zawsze w odstępie 2-godzinnym od leków przeciwbakteryjnych i przeciwgrzybicznych, niektóre zawierają śladowe ilości kazeiny, co 3-4 miesiące trzeba rotować. Polecała VSL3 i preparaty z bifidobacterium infantis.

6.   Enzymy trawienne
Według Lori (i np. Karen DeFelice, która jest autorką dwóch książek o stosowaniu enzymów) powinno się je podawać z większością posiłków, mają działanie przeciwzapalne, zawsze w diecie są jakieś peptydy, które enzymy pomagają rozłożyć. Szczególnie niezbędne są przy złym przybieraniu na wadze, niestrawionych resztkach w kale, złej konsystencji kału, nietolerancjach pokarmowych

7.   Leki antygrzybowe – ten temat nie był rozwijany

8.   Aminokwasy – ten temat nie był rozwijany

11. Brigitte Esser – Chelatacja

- osoby z autyzmem gorzej usuwają metale ciężkie z powodu mutacji genetycznych (głównie MTHFR), problemów z glutationem. Symptomy zatrucia metalami nie są specyficzne i nie ma też testu na 100% potwierdzającego zatrucie. Dobry jest test z włosów ale też możliwe jest zanieczyszczenie próbki. Zdaniem dr Esser wskazówki interpretacyjne Andy Cutlera są bardzo dokładne.
- test z krwi – metale utrzymują się w krwi bardzo krótko, ciało stara się ich pozbyć (a jak nie może to trafiają do tkanek)
- test z kału – bardzo słaba wartość diagnostyczna
- test z moczu – testy prowokacyjne też nie pokażą obciążenia metalami, pokażą ewentualnie czy organizm może je mobilizować

Przed chelatacją powinno się wykonać morfologię z rozmazem, badanie wątroby, nerek i poziomu elektrolitów.
Zdaniem dr Esser przed chelatacją powinno się latami przygotowywać organizm, zmniejszyć stres oksydacyjny, wyleczyć jelito, wyleczyć wątrobę i nerki. Na pewno istotna była rada aby zrobić wszystko, aby nie było dalszej ekspozycji na metale – założyć filtry na kran, wymienić rury i farby na ścianie na bezołowiowe i bezmiedziowe. Uważać na owoce i warzywa, które są bardzo naładowane metalami. Nie szczepić albo szczepić szczepionkami bez tiomersalu (dostępne coraz bardziej w Niemczech, które swoje zapasy szczepionek zatrutych tiomersalem sprzedają tanio do krajów Europy Wschodniej), sprawdzić czy w kosmetykach nie ma metali ciężkich.

Co do samej chelatacji to dr Esser mówiła o DMSA, które jest lekiem zaaprobowanym przez FDA do użytku pediatrycznego, najlepiej podawać doustnie, chelatuje głównie ołów.
Możliwe efekty uboczne to zaburzenia układu pokarmowego, rozrost candidy (karmionej przez siarkę), obniżona odporność, wysypki.
Dr Esser wspominała też o DMPS, który ma szerszy zakres działania i chelatuje więcej metali, lepiej się wchłania i podaje się go co 8 godzin przez 2-3 dni, a potem jest 11 dni przerwy. Efekty uboczne – podobnie jak DMPS.
Dr Esser wspomniała o alternatywnych sposobach chelatacji: chlorella, NDF, zeolit, biorezonans, czosnek, kolendra – wg mnie polecane dla tych, którzy lubią eksperymentować na swoich dzieciach.

Czy plomby amalgamatowe są bezpieczne dla ludzi? Opinia komitetu naukowego Komisji Europejskiej

Joachim Mutter

Wydział Medycyny Środowiskowej i Integracyjnej, Lohnerhofstraße 2, 78467 Constance/Germany

Journal of Occupational Medicine and Toxicology 2011, 6:2 doi:10.1186/1745-6673-6-2

© 2011 Mutter; licensee BioMed Central Ltd.

Streszczenie

Naukowy Komitet Nowo Zidentyfikowanych Zagrożeń Zdrowotnych (Scientific Committee on Emerging and Newly Identified Health Risks, SCENIHR) w raporcie dla Komisji Europejskiej stwierdził, iż “…nie istnieje ryzyko negatywnych efektów dla całego układu zdrowotnego i aktualne wykorzystywanie amalgamatów w plombach nie niesie ryzyka choroby układowej… ” [1, dostępne z: http:/ / ec.europa.eu/ health/ ph_risk/ committees/ 04_scenihr/ docs/ scenihr_o_016.pdf webcite].

SCENIHR zignorował toksykologię rtęci i nie zawarł w swojej opinii najbardziej podstawowych badań naukowych. Prawdziwe dane naukowe pokazują, że:

(a) Plomby amalgamatowe to główne źródło całkowitego obciążenia rtęcią u człowieka. Zostało to udowodnione badaniami autopsyjnymi, które wykazały 2-12 razy więcej rtęci w tkankach ciała u osób z amalgamatami. Badania autopsyjne to najbardziej wartościowe I ważne badania dla pomiaru całkowitego obciążenia organizmu rtęcią.

(b) Te badania wykazały jasno i spójnie, że wiele osób z amalgamatami ma toksyczne stężenia rtęci w mózgach i nerkach.

(c) Nie ma korelacji między poziomem rtęci we krwi czy moczu a poziomem rtęci w tkankach ciała czy stopniem objawów klinicznych. SCENIHR oparł się wyłącznie o pomiary rtęci w moczu i krwi.

(d) Okres półtrwania rtęci w mózgu może trwać od kilkunastu lat do dekad, rtęć kumuluje się przez cały czas ekspozycji na amalgamaty, osiągając poziomy toksyczne. Jednakże SCENIHR ywierdzi, że okres półtrwania rtęci w mózgu to tylko (20-90 dni).

(e) Opary rtęci są około 10 razy bardziej toksyczne niż ołowiu, jeśli chodzi o wpływ na neurony ludzkie i wykazują synergistyczną toksyczność z innymi metalami.

(f) Większość badań zacytowanych przez SCENIHR które kończą się wnioskami, że plomby amalgamatowe są bezpieczne, charakteryzują się poważnymi błędami metodycznymi.

Plomby amalgamatowe to podstawowe źródło rtęci w tkankach ludzkiego ciała

SCENIHR twierdzi, że [1]: “Ekspozycję na rtęć trudno zmierzyć. W związku z tym wskaźniki tej ekspozycji uzyskano poprzez zmierzenie rtęci w moczu i krwi poszczególnych osób.”

SCENIHR nie zacytował żadnych badań opartych na autopsji, które są najbardziej wiarygodne w ocenie poziomu rtęci w tkankach.

Zaobserwowano około dwu-pięciokrotny wzrost poziomu rtęci w moczu i krwi u osób żyjących z plombami amalgamatowymi i dwu-dwunastokrotny wzrost poziomu rtęci w różnych tkankach ciała u zmarłych z amalgamatami [2-21]. Ponadto badania na zwierzętach potwierdziły fakt, że amalgamaty prowadzą do znacząco wyższych stężeń w tkankach [22-28].

Według tych badań, plomby amalgamatowe są odpowiedzialne za przynajmniej 60-95% obciążenia rtęcią w tkankach ciała. Tego nie uwzględnił SCENIHR.

Czy plomby amalgamatowe nie zawierają rtęci organicznej?

SCENIHR [1] twierdzi że “nie ma dowodu na to, że dochodzi do biotransformacji rtęci z amalgamatu w ustach w połączeniu z działaniem bakterii.”

W przeciwieństwie do tego stwierdzenia, są badania które wykazały że rtęć (Hg) z amalgamatów jest transformowana do rtęci organicznej przez mikroorganizmy w ludzkim układzie pokarmowym [29-31]. Leistevuo et al. (2001) wykrył trzykrotny wzrost poziomu rtęci metylowanej w ślinie osób z amalgamatami w porównaniu z osobami bez amalgamatów, chociaż częstotliwość i rodzaj konsumowanych ryb były w obu grupach identyczne. Poziomy rtęci w ślinie przekraczały normy rtęci dla kanalizacji u 20% osób z amalgamatami [30]. Forma rtęci metylowanej zawartej w plombach amalgamatowych może być bardziej toksyczna (do 20 razy) niż rtęć metylowana zawarta w rybach.

Toksyczne poziomy rtęci in vitro oraz in vivo

Poziomy rtęci nieorganicznej rzędu 0.02 ng Hg/g (0.1 μMolar Hg w ilości 2 μl w 2 ml roztworze) doprowadziły do całkowitego zniszczenia wewnątrzkomórkowych mikrotubuli i degeneracji aksonów [32]. W innych eksperymentach poziomy rtęci nieorganicznej rzędu 36 ng Hg/g (0.18 μMol Hg) doprowadziły do stresu oksydacyjnego i co za tym idzie, uszkodzenia komórek [33,34].

Wdychanie oparów rtęci w dawkach, które dostępne są dla osobami z wieloma plombami amalgamatowymi, doprowadziły do patologicznych zmian w mózgach zwierząt po 14 dniach [35,36].

Plomby amalgamatowe nie prowadzą do toksycznych stężeń rtęci u ludzi?

W niedawnych badaniach autopsyjnych ustalono, że osoby z więcej niż 12 plombami amalgamatowymi mają ponad 10-krotnie wyższe poziomy rtęci w różnych tkankach, w tym w mózgu, w porównaniu do osób z 0-3 plombami amalgamatowymi [11].

Średni poziom rtęci w mózgu obywatela UE, który ma ponad 12 plomb amalgamatowtch wynosił 300 ng Hg/g w tkance mózgu[11], co jest daleko ponad udowodnioną toksyczną dawkę dla neuronów (0.02 -36 ng Hg/g) (jak wskazano wyżej).

W innych badaniach osoby z ponad 10 plombami amalgamatowymi miały 504 ng Hg/g w tkankach nerek (0-2 amalgamatów: 54 ng Hg/g) i 83.3 ng Hg/g w wątrobie (0-2 amalgamatów: 17.68 ng Hg/g) [5].

Poziomy rtęci w gruczołach tarczycy i przysadki wynosiły odpowiednio 55 ng Hg/g i 200 ng Hg/g i ilości te miały związek z ilością plom amalgamatowych [37].

Z uwagi na faktm że te poziomy są tylko poziomami średnimi, duża część osób z amalgamatami ma ponad dwukrotne poziomy toksyczne rtęci z tkankach ciała Podkreślić należy, że poziomy rtęci stwierdzone w częściach komórki takich jak mikrosomy, mitochondria i inne przekraczają nawet średnie poziomy w tkankach mózgu analizowane w tych badaniach [38].

Toksyczne poziomy rtęci w chorobie Alzheimera

Średnie obciążenie rtęcią w tkankach mózgu u osób z chorobą Alzheimera wynosiło 20 do 178 ng Hg/g; w niektórych przypadkach dochodziło nawet do 236- 698 ng Hg/g. W 15% próbkach tkanki mózgowej obciążenie rtęcią wynosiło ponad 100 ng Hg/g [39-41]. Średnie obciążenie rtęcią w przysadce wynosiło 400 ng Hg/g [42]. Te poziomy znacznie przekraczają poziomy toksyczne (patrz wyżej).

Patologiczne zmiany, spowodowane przez rtęć, w wielu mózgach Niemców?

Około 20% dwudziestolatków, 50% pięćdziesięciolatków i 90% 85-latków zamieszkałych w Niemczech ma patologiczne zmiany w mózgu typowe dla choroby Alzheimera [43] i toksyczności rtęci. Ten rozkład patologicznych zmian w mózgu spowodowanych bardzo niskimi poziomami rtęci a nie innych metali (np. ołowiu, żelaza, aluminium, miedzi, manganu, chromu, kadmu) [32,36] przypomina rozkład częstotliwości plomb amalgamatowych u ludzi: około 80-90% Niemców przez wiele dziesięcioleci miało założone takie plomby. Warto zauważyć, że około 30-50% Niemców powyżej 85 roku życia ma chorobę Alzheimera i wiele przemawia za tym, że główną rolę w jej patogenezie odgrywa rtęć [44].

Amalgamaty u matki jako główne źródło rtęci w tkankach dziecka

Amalgamaty u matki powodują znaczący wzrost poziomów rtęci w tkankach ciała płodu i noworodka, w tym w mózgu [6]. Co więcej poziom rtęci w łożysku, u płodu i noworodka jest skorelowany z ilością plomb amalgamatowych u matki [6,45-52].

Poziomy rtęci w wodach płodowych [53] i mleku kobiecym [54-56] również są skorelowane z ilością plomb amalgamatowych u matki.

Rtęć w tkankach noworodka: zwiększone ryzyko zaburzeń rozowojowych?

Drasch et al. stwierdzili poziomy rtęci do 20 ng Hg/g w mózgach niemieckich noworodków, co było spowodowane głównie wpływem plomb amalgamatowych ich matek [6]. Jak opisano powyżej poziomy rtęci rzędu 0,02 ng Hg/g prowadziły do degeneracji aksonów [32]. Co więcej, poziomy rtęci w mózgach noworodków, których matki miały plomby amalgamatowe, są wystarczająco wysokie aby zahamować działanie ważnego enzymu syntetazy metioninowej [57,58]. Jest to enzym niezbędny dla metyzacji, najistotniejszy punkt najważniejszych przemian metabolicznych w ciele, w tym rozwoju mózgu, dojrzewania komórek nerwowych i produkcji neuroprzekaźników.

Plomby amalgamatowe u matek zwiększają dodatkowo znacznie poziomy rtęci w krwi pępowinowej [59,60]. Ryzyko opóźnionego rozwoju u dzieci było 3.58 razy większe, kiedy poziomy rtęci w krwi pępowinowej przekraczały 0.8 ng Hg/ml [61]. Warto podkreślić, że poziomy rtęci w krwi pępowinowej od 0.2 do 5 ng Hg/ml są oceniane jako “w normie” w Niemczech [62], co pozostawia wiele noworodków z takimi poziomami rtęci, które mogą spowodować deficyty neurorozwojowe.

Nie ma korelacji między rtęcią w moczu albo krwi oraz w tkankach ciała

Raport SCENIHR jest oparty na badaniach, w których mierzono poziomy rtęci we krwi i w moczu jako wskaźnik obciążenia rtęcią całego ciała. Jednakże WHO twierdzi (1991) że

“Toksyczność rtęci jest typu “retencyjnego” i większość rtęci, która trafia do ciała, jest absorbowana przez tkanki. Ilość w moczu odzwierciedla rtęć wydalaną. Pozostaje jednak główne pytanie, ile rtęci odkłada się w różnych tkankach ciała”.

Wykazano w eksperymentach na ludziach i zwierzętach, że mimo normalnych albo niskich poziomów rtęci we krwi, włosach i moczu, bardzo wysokie poziomy rtęci ujawniono w istotnych tkankach ciała, jak mózg i nerki [7,13,20,22,25,28,46,63,64]. Niedawne badania na osobach zmarłych potwierdziły, że nie ma żadnej korelacji między poziomami rtęci nieorganicznej w krwi czy moczu a poziomami rtęci w mózgu [37].

Drasch i współpracownicy udowodnili, że 64% osób, które zawodowo są poddane ekspozycji na opary rtęci i wykazują typowe oznaki zatrucia rtęcią miały poziom rtęci w moczu poniżej 5 μg/l, czyli poziom bez widocznych efektów ubocznych (No Observed Adverse Effect Level  - NOAEL). To samo stwierdzono wobec rtęci we krwi i we włosie [65-67].

Paradoksalny związek między poziomem rtęci w moczu a objawami klinicznymi

Istnieje nawet dość paradoksalny związek między poziomami rtęci w moczu, krwi czy włosach a objawami klinicznymi: Osoby z najwyższymi poziomami rtęci w moczu najszybciej dochodziły do zdrowia po problemach neuropsychologicznych związanych z usuwaniem plomb amalgamatowych [68]. Również dzieci z najwyższymi poziomami rtęci we włosach lepiej sobie radziły w testach rozwojowych [69]. Inne badania wskazały, że pomimo znacząco wyższej ekspozycji na rtęć w łonie matki, dzieci autystyczne miały aż do 15 razy mniej rtęci we włosach niż zdrowa grupa kontrolna [46]. Co więcej, im niższy był poziom rtęci we włosach dziecka, tym cięższe były objawy autyzmu [46].

Pomimo wyższego obciążenia rtęcią organizmu, osoby “nadwrażliwe na amalgamat” wykazywały niższe poziomy rtęci w ślinie, krwi czy moczu [70]. Nawet po prowokacji DMPS osoby “nadwrażliwe na amalgamat” wydalały średnio tylko 7,77 μg Hg w moczu przez 24 godziny, a zdrowe osoby z amalgamatami wydalały 12,69 μg Hg/24h [70].

Co więcej badania potwierdziły, że stosunek wydalania z kałem do wydalania z moczem jest jak 12 do 1 [13]. To dowodzi, że większość wydalanej rtęci wychodzi z żółcią przez wątrobę. Rtęć wydalana z moczem to tylko 8% całości wydalanej rtęci. A zatem pomiar rtęci w moczu może jedynie pokazać, ile rtęci wydalają nerki – a nie jaka jest jej całowita ilość w organizmie.

Bezpieczne poziomy dla rtęci?

W świetle zaprezentowanych danych nie jest możliwe określenie jakichkolwik poziomów bezpieczeństwa, poniżej których efekty uboczne będą wyłączone [71]. SCENIHR określił takie poziomy, wydedukowane z badań nad osobami, które zawodowo związane są z rtęcią. Te poziomy nie mogą jednak zostać zastosowane u osób z plombami amalgamatowymi, gdyż:

a) Bardzo często brana jest pod uwagę do porównania ekspozycja na rtęć u pracowników, którzy jednocześnie pracują z chlorem, chociaż jednoczesna ekspozycja na chlor zmniejsza absorpcję rtęci do tkanek o 50-100% [72].

b) Pracownicy mający kontakt z rtęcią zwykle zaczynają tę ekspozycję w okresie dorosłości (przez około 8 godzin dziennie i 5 dni w tygodniu) podczas gdy zatruci z amalgamatów mogą zostać poddani ekspozycji na rtęć już w łonie matki, przez jej amalgamaty od czasu dzieciństwa aż do śmierci, 24 godziny dziennie i 7 dni w tygodniu.

c) Pracownicy to grupa ogólnie zdrowa, podczas gdy ciężarne kobiety, noworodki, dzieci, osoby z różnymi chorobami (stwardnienie rozsiane, choroby autoimmunologiczne, nowotowory) w ogóle nie przystępują do pracy z powodu przepisów BHP albo z powodu problemów, które pojawiają się we wczesnym okresie pracy.

d) Pomimo ekspozycji na rtęć poniżej “poziomu bezpieczeństwa” znaczące efekty uboczne stwierdzono również w badaniach nad osobami zawodowo narażonymi na ekspozycję na rtęć, nawet w kilkanaście lat po ustaniu ekspozycji [73-81].

Okres półtrwania rtęci w ciele

SCENIHR twierdzi, że okres półtrwania rtęci w ciele to “20-90 dni”.

Szczególnie w mózgu rtęć ma znacząco dłuższy okres półtrwania – więcej niż 17 lat [63,64,82-87].

Toksyczność rtęci

SCENIHR nie wspomniał o specyficznej toksyczności oparów rtęci pochodzących z plomb amalgamatowych. Powinno się to szacować następującą analizą ryzyka:

Rtęć jest 10 razy bardziej toksyczna od ołowiu, co wykazały badania in vitro [88-90]. Rtęć jest najbardziej toksycznym nie-radioaktywnym pierwiastkiem. Opary rtęci to jedna z najbardziej toksycznych form rtęci na równi z rtęcią organiczną. O tej nadzwyczajnej toksyczności rtęci świadczą następujące okoliczności:

a) Rtęć jest jedynym metalem, który w temperaturze pokojowej jest gazem bardzo łatwo absorbowanym przez układ oddechowy (80%).

b) Opary rtęci z amalgamatów wnikają do tkanek bardzo łatwo z uwagi na monopolarową konfigurację atomową.

c) Wwenątrz komórek opary są oksydowane do Hg2+, bardzo toksycznej formy rtęci, która wiąże się ściśle z grupami tiolowymi różnych protein, uniemożliwiając ich aktywność biologiczną.

d) Hg2+ jest bardziej toksyczna niż Pb2+, kadm (Cd2+) I inne metale, bo ma większą retencyjność w ciele z uwagi na silną więź z grupami tiulowymi (cysternami w białkach), co powoduje nieodwracalne zahamowanie ich aktywności. Inne metale tworzą odwracalne więzi z proteinami i są dlatego mniej toksyczne.

e) Hg2+ nie wiąże się wystarczająco ściśle z grupami węglowymi naturalnych kwasów organicznych aby zapobiec jej toksyczności.

f) Chelatory takie jak EDTA, które normalnie powstrzymują efekty działania metali ciężkich jak ołów, nie mają takiego oddziaływania na toksyczność rtęci, a mogą nawet I ją zwiększać [91,92]. Inne chelatory (DMPS i DMSA) hamują toksyczne efekty Cd2+ i Pb2+, ale nie Hg2+ [93]. DMPS, DMSA albo naturalne środki jak witamina C, glutation czy kwas alfa-liponowy nie usuwają rtęci z układu nerwowego [94]. (tu niestety autor nie uwzględnił specyficznej farmakokinetyki ALA, dokładne wyliczenia na ten temat dostępne w „Amalgam Illnes”” A. Cutler). DMPS albo DMSA mogą nawet zwiększać hamujące działanie Hg2+ i Cd2+ na enzymy, co nie dotyczy Pb2+ [95]. Co więcej, DMPS u zwierząt doprowadziło do zwiększenia stężenia rtęci w rdzeniu kręgowym [96].

Toksyczność rtęci metylowanej, która znajduje się w rybach wygląda na niższą (tylko około 1/20) niż rtęci metylowanej wykorzystywanej w eksperymentach [97].

Ponadto, ryby morskie są bogatym źródłem selenu i kwasów tłuszczowych omega-3, które chronią przed toksycznością rtęci. Niezależnie od tego chlorek rtęci metylowanej, który jest bardziej toksyczny niż rtęć metylowana z ryb, był mniej neurotoksyczny dla rozwijających się układów nerwowych in vivo niż opary rtęci [98].

Badania Drascha et al. pokazują podobne korelacje: Społeczność poszukiwaczy złota, poddana ekspozycji na opary rtęci, wykazywała znacząco więcej objawów zatrucia rtęcią niż grupa kontrolna, która była poddana ekspozycji na rtęć metylowaną z ryb, pomimo że poziomy rtęci we włosach i osoczu były wyższe w porównaniu do osób poddanych ekspozycji na opary rtęci [65,66]. Inne badania wskazują też na mniejszą neurotoksyczność rtęci metylowanej z ryb, w porównaniu do jatrogennych źródeł rtęci (amalgamat, tiomersal) [46]. Tutaj, w przeciwieństwie do ilości plomb amalgamatowych u matek, nie ma korelacji pomiędzy jedzeniem ryb przez matki w ciąży i ryzykiem autyzmu u dzieci.

Podsumowując, opary rtęci z amalgamatów albo rtęć metylowana pochodząca z amalgamatów mają pełen potencjał toksyczny. Z drugiej strony rtęć metylowana w rybach już weszła w więź z proteinami w rybach albo innymi ochronnymi cząsteczkami w rybach takich jak glutation i selen, w które ryby są bogate. Co więcej, nowsze badania potwierdzają, że większość osób z plombami amalgamatowymi jest narażonych na toksyczne poziomy rtęci [99,100].

Synergistyczna toksyczność rtęci i ołowiu (Pb)

Niektórzy naukowcy próbują polemizować, twierdząc że wyniki otrzymane drogą analizy zwierząt lub komórek są przeszacowane i nieporównywalne do stanu ludzkiego organizmu. Jednakże w przeciwieństwie do zwierząt wykorzystywanych w eksperymentach, ludzie poddani są stałej ekspozycji na różne inne toksyny, a zatem ich efekty sumują się, a nawet są synergistyczne [101,102]. Na przykład udowodniono, że kombinacja śmiertelnej dawki 1% rtęci (LD1Hg) wraz z dawką śmiertelną LD1 ołowiu (Pb) skutkuje śmiercią wszystkich zwierząt, więc można sformułować następujące równanie toksykologiczne: LD1 (Hg) + LD1 (Pb) = LD 100 [101].

W tym kontekście trzeba sobie uzmysłowić, że nowoczesny człowiek ma więcej rtęci i około 1000 razy więcej ołowiu w tkankach ciała niż człowiek starożytny.

W innych eksperymentach dodanie tlenku glinu (zwykle jest on w szczepionkach), antybiotyków, tiomersalu (bywa w szczepionkach) i testosteronu zwiększyło toksyczność rtęci [108,109]. Synergistyczna toksyczność testosteronu wyjaśnia, dlaczego o wiele więcej mężczyzn niż kobiet cierpi na autyzm  czy stwardnienie boczne zanikowe.

Nie ma efektów ubocznych spowodowanych przez amalgamaty?

SCENIHR twierdzi ” Ustalono, że nie istnieje ryzyko negatywnych efektów dla całego układu zdrowotnego i aktualne wykorzystywanie amalgamatów w plombach nie niesie ryzyka choroby układowej ” oraz “….niektóre sporadyczne efekty uboczne mają czasami związek z amalgamatami ale występują rzadko i łatwo je zneutralizować “

SCENIHR pominął liczne badania, które stwierdziły znaczące efekty zdrowotne spowodowane plombami amalgamatowymi:

Cytotoksyczność amalgamatu w porównaniu do plomb kompozytowych

SCENIHR porównał toksyczność amalgamatów i plomb kompozytowych. Jednak w większości eksperymentów, nawet rtęć nieorganiczna – o wiele mniej toksyczna niż opary rtęci (gdyż nie penetruje tak łatwo komórek) była bardziej toksyczna niż jakikolwiek składnik kompozytu: dowiedziono, że rtęć jest 80-100 razy bardziej toksyczna dla człowieka niż jakikolwiek składnik kompozytu [110-114].

Genotoksyczność, stress oksydacyjny, nowotwór

Plomby amalgamatowe powodują uszkodzenie DNA w komórkach krwi u człowieka. [115] Nawet niskie poziomy rtęci nieorganicznej prowadzą do znaczącego uszkodzenia DNA w komórkach ludzkich tkanek i limfocytach [116]. Ten efekt, który wywołuje raka, został stwierdzony u osób z poziomem rtęci poniżej tego, który normalnie wywołuje cytotoksyczność i śmierć komórkową . Ponadto aberracje chromosomów mogą być spowodowane prze działanie amalgamatu na kultury komórkowe [117]. Osoby mające amalgamaty mają wyższe markery stresu oksydacyjnego w ślinie [118,119] i krwi [120,121]. Wzrost stresu oksydacyjnego koreluje z ilością plomb. Poziomy rtęci obserwowane normalnie w tkankach osób z amalgamatami prowadzą do zwiększonego stresu oksydacyjnego i redukcji poziomów glutationu, co powoduje uszkodzenia komórek [33,34]. Znacząco podniesione poziomy rtęci zaobserwowano też w tkankach nowotworu piersi [122]. Rtęć odłożona w tkankach wiąże się zwykle z selenem, co oznacza, że selen nie jest już dostępny dla organizmu. Amalgamaty mogą dlatego wzmagać deficyt selenu, zwykle w krajach, gdzie poziom selenu jest niedostateczny (np. Europie Środkowej) [123,124].

Odporność na antybiotyki

Udowodniono, że rtęć z plomb amalgamatowych może wywoływać odporność na rtęć u bakterii [125-127]. To prowadzi do ogólnej odporności na antybiotyki bakterii w jamie ustnej i w innych miejscach [127], co jest szczególnie prawdziwe w sytuacji, kiedy geny odpowiedzialne za odporność na antybiotyki są zawarte w tym samym operonie odporności na rtęć [128,129]. Odporność na rtęć jest powszechna u bakterii jamu ustnej człowieka [130,131]. Małpy z amalgamatami miały więcej bakterii odpornych na antybiotyki stwierdzonych w kale [127,132].

Penetracja szczęki i kości jarzmowej przez amalgamaty

Eksperymenty na małpach i owcach wykazały, że rtęć z amalgamatów łatwo penetruje korzenie zębów i kości szczęki [25,26]. Fakt, że stwierdzono to też u ludzi [133] potwierdza alternatywną drogę ekspozycji na rtęć spowodowaną przez amalgamaty.

Skóra

Jest korelacja między atopowym zapaleniem skóry, poziomami IgE i obciążeniem rtęcią [134]. Plomby amalgamatowe mogą powodować liszaje [135-139]. W ponad 90% przypadków te zmiany ustąpiły po usunięciu rtęci, niezależnie od tego, czy wyniki alergologiczne byłyt nadal pozytywne. Poprawiła się również granulomatoza [140]. Inne formy zapalenia skóry wydają się być powiązane z amalgamatami [141,142].

Zaburzenia autoimmunologiczne i nadwrażliwość na rtęć

Stała ekspozycja na rtęć w małych dawkach, powszechna u osób z amalgamatami, jest możliwym źródłem niektórych chorób autoimmunologicznych, np. stwardnienia rozsianego, artretyzmu czy tocznia rumieniowatego układowego [135,143-152]. Te efekty pojawiają się przy ekspozycji poniżej bezpiecznych limitów dla rtęci [153]. Ostatnie badania wykazały, że rtęć i rtęć etylowana na bardzo niskich poziomach mają zdolność hamowania pierwszego kroku (fagocytozy) wrodzonej  odpowiedzi immunologicznej u ludzi [154]. To pokazuje, że ekspozycja na rtęć poniżej średniej ekspozycji może powodować zaburzenia układu odpornościowego u osób w różnym wieku.

Tylko “rzadkie przypadki dowiedzionych reakcji alergicznych”?

SCENIHR akceptuje tylko “dowiedzione” reakcje alergiczne na amalgamaty, czyli pozytywny wynik na teście skórnym. Jednakże oduwodowniono, że u ponad 90% przypadków, u których stwierdzono reakcje błony śluzowej, te zmiany wyleczyły się po usunięciu amalgamatów, niezależnie od wyników testu skórnego [137,139,140]. Dlatego waga testów skórnych w wykrywaniu nadwrażliwości czy alergii na rtęć w jamie ustnej bez kontaktu rtęci ze skórą, jest kwestionowana [155].

Wyniki innych wiarygodnych badań potwierdzają, że immunologiczne problemy spowodowane amalgamatami są częstsze niż “rzadkie przypadki” [148,150,152,156-162].

Może być też korelacja między atopowym zapaleniem skóry, poziomami IgE i obciążeniem organizmu rtęcią, której nie wykażą testy skórne [134].

Z uwagi na fakt, że rtęć z amalgamatów matki jest jednym z głównych źródeł rtęci u płodu I noworodka, poporodowe atopowe zapalenie skóry znika po odtruciu dzieci z rtęci [163].

Choroby serca

Rtęć może powodować nadciśnienie i zawał mięśnia sercowego[164].

Znaczące kumulacje rtęci (22,000 razy wyższe niż w grupie kontrolnej) ujawniono w tkance serca dotkniętego niewydolnością [165].

Układ moczowy

SCENIHR zacytował tylko jedno badanie wykonane przez dentystę i opublikowane w periodyku stomatologicznym [166] oraz 5-7 letnie badania na zdrowych dzieciach, również przeprowadzone przez dentystów aby poprzeć swój argument, że “nie ma dowodów na to, że amalgamaty mają wpływ na funkcje nerek u ludzi “. Jednakże wiele badań sugeruje coś przeciwnego:

W eksperymentach na zwierzętach stwierdzono upośledzenie funkcji kanalików moczowych z powodu plomb amalgamatowych [23,146,167]. Ludzie z amalgamatami wykazują więcej objawów uszkodzenia układu moczowego niż osoby bez tych plomb [15]. Często wymieniane badanie dzieci ujawniło pierwsze oznaki uszkodenia nerek (mikroalbuminuria) [168] nawet po 5 latach od ekspozycji na amalgamaty.

Choroba Alzheimera (AD)

SCENIHR zakwestionował fakt, że rtęć może być podłożem choroby Alzheimera. Jako dowód zacytowano tylko jedne badania [41] opublikowane w periodyku wiodącej w świecie American Dental Association (ADA) [102]. Tymczasem inne badania wykazały, że rtęć odgrywa ogromną rolę w patogenezie choroby Alzheimera [108,109,169,170]. Nowa systemowa analiza literatury pod tym kątem wykazała znaczący związek [124].

Choroba Parkinsona (PD)

Metale ciężkie podejrzewane są od dawna jako podłoże PD, wiele badań pokazuje ten związek, w tym badania epidemiologiczne [171-180]. Rtęć pierwiastkowa powoduje PD [175] i w badaniach przypadku wykazano, że stan chorego wyraźnie poprawił się po terapii chelatacyjnej [173] i pozostał niepogorszony podczas kolejnego okresu 5-letniego [173]. W  innych badaniach stwierdzono znacząco podwyższone poziomy rtęci we krwi u 13 z 14 pacjentów z PD w porówaniu do grup kontrolnych [172]. To jest zgodne z wnioskiem poprzednich badań, które ujawniły związek między poziomami rtęci we krwi i PD [176]. Inne badania ujawniły znacząco wyższą ekspozycję na amalgamaty u osób z PD w porównaniu do  grup kontrolnych [179].

Efekty uboczne u personelu dentystycznego?

SCENIHR stwierdził, że “częstotliwośćzgłoszonych efektów ubocznych [u personelu dentystycznego i dentystów] jest bardzo niska”.

Prosty przegląd literatury ujawnia przeciwny wniosek: dentyści pracujący z amalgamatami mają zwiększoną ekspozycję na rtęć [17,181,182]. W większości dostępnych badań ta ekspozycja w klinikach dentystycznych powodowała znaczące efekty zdrowotne u dentystów. W niektórych badaniach, obraz kliniczny nie był skorelowany z poziomem rtęci w moczu czy krwi, więc niektórzy badacze fałszywie przyjęli, że rtęć nie była powodem tych reakcji. Jednakże, nie jest to wniosek zgodny z prawidłami nauki, gdyż poziomy rtęci w moczu oraz krwi nie odpowiadają poziomom w tkankach (patrz powyżej). Lindbohm et al. (2007) ujawnili dwukrotnie wyższe ryzyko poronień poprzez zawodową ekspozycję na rtęć (OR 2,0; 95% CI 1,0- 4,1). Ten efekt ekspozycji na rtęć był silniejszy niż efekt ekspozycji na substancje akrylowe, dezynfekujące czy rozpuszczalniki [199].

Nawet w 30 lat po ekspozycji na rtęć, pielęgniarki stomatologiczne miały znaczące problemy zdrowotne [200]. Pomimo faktu, że 85% dentystów i techników stomatologicznych wykazało zmiany odpowiadające toksyczności rtęci zarówno w parameytrach biologicznych, jak i behawioralnych, a 15% wykazało zwiększony poziom deficytów neurologicznych z polimorfizmem genu CPOX4 [186,188,201], SCENIHR wciąż utrzymuje, że amalgamaty nie powodują znaczących problemów zdrowotnych u dentystów, bo poziomy rtęci we krwi oraz moczu są poniżej „bezpiecznych limitów “.

Bezpłodność

SCENIHR stwierdził, że “Nie ma dowodu pomiędzy związkiem plomb amalgamatowych a męską lub żeńską bezpłodnością “. Jako dowód zacytowano tylko jedno badanie, które badało tylko parametry spermy u mężczyzn. Jednakże inne badania wskazują na coś przeciwnego, w szczególności w odniesieniu do kobiet:

Asystentki dentystów poddane ekspozycji na amalgamat wykazały wyższy wskaźnik bezpłodności [198]. Kobiety z dużą ilością plomb albo zwiększonym poziomem rtęci w moczu (po podaniu DMPS) miały wyższy wskaźnik bezpłodności [202-204]. Detoksykacja metali ciężkich doprowadziła do spontanicznego zachodzenia w ciążę u znacznej ilości bezpłodnych pacjentów [203]. Ekspozycja na rtęć doprowadziła do zmniejszonej płodności mężczyzn [205-207]. Studium norweskie, często cytowane jako dowód, że ekspozycja na rtęć w klinikach dentystycznych nie powoduje bezpłodności, obarczone jest metodologicznymi błędami, gdyż uwzględniono w nim tylko kobiety, które urodziły już przynajmniej jedno dziecko. Kobiety bezdzietne zostały wykluczone. Takie studium oczywiście nie może odpowiedzieć na pytanie, czy praca z amalgamatami prowadzi do bezpłodności, czy nie. Co więcej nie wyliczono czasu ekspozycji na amalgamat i nie uwzględniony on został jako zmienna w studium.

Stwardnienie rozsiane (MS)

W płynie mózgowo-rdzeniowym pacjentów z MS ujawniono 7,5 razy zwiększony poziom rtęci [208]. Ciężko nie spekulować, czy obecność rtęci w takiej ilości przynajmniej nie wpływa na zaostrzenie problemów powiązanych z MS albo inną chorobą neurologiczną. Częstotliwość MS jest skorelowana z częstotliwością próchnicy [209,210] i amalgamatów [211,212]. Kilkanaście przypadków MS spowodowane zostało ostrym zatruciem oparami rtęci czy ołowiu [213]. U zwierząt rtęć nieorganiczna spowodowała utratę komórek Schwanna, które budują osłonki mielinowe i stabilizują aksony [214]. Patogeneza autoimmunologiczna, w tym przeciwciała przeciwko podstawowemu białku mielinowemu (MBP), może być sprowokowana przez rtęć i inne metale ciężkie [148].

Pacjenci MS, u których usunięto plomby amalgamatowe, rzadziej cierpieli na depresję, agresję, było mniej zachowań psychotycznych i kompulsywnych w porównawniu do pacjentów z amalgamatami [215]. Mieli też niższe poziomy rtęci we krwi [216]. Po usunięciu amalgamatu, patologiczne prążki oligoklonalne w płynie mózgowo-rdzeniowym zniknęły u pacjentów z MS [217]. Usunięcie amalgamatów doprowadziło do wyleczenia dużej ilości pacjentów z MS [147]. Retrospektywne studium 20.000 żołnierzy wykazało znacznie większe ryzyko MS u osób z amalgamatami [218]. To ryzyko było niedoszacowane, bo grupa badawcza wybrana drogą badań medycznych składała się z osób o dobrym zdrowiu w trakcie zaciągu do wojska [218]. Inny problem pojawiający się w niektórych badaniach to brak dokumentacji dentystycznej sprzed czasu rozwoju MS. Pomimo tych ograniczeń [219] powtórna analiza ujawniła 3,9 razy większe ryzyko MS u osób z amalgamatami w porównaniu do osób  bez amalgamatów. Niedawny przegląd badań dowiódł także, że istnieje zwiększone ryzyko MS spowodowanego przez amalgamaty gdyż większość badań nie była oparta na właściwej grupie kontrolnej bez amalgamatów [220].

Stwardnienie zanikowe boczne (ALS)

SCENIHR stwierdził, że “nie ma dowodu pomiędzy ALS a rtęcią “.

W przeciwieństwie do tego twierdzenia, wiele badań sugeruje, że rtęć może odgrywać rolę w patogenezie ALS:

Opary rtęci są absorbowane przez neurony motoryczne [221] co prowadzi do zwiększonego stresu oksydacyjnego. W eksperymentach wykazano, że opary rtęci powodują choroby neuronów motorycznych, takie jak [222-226]. Udowodniono, że rtęć zwiększa toksyczność glutaminianu, która jest czynnikiem przy ALS. Badania przypadków wykazały korelację pomiędzy przypadkową ekspozycją na rtęć a ALS [227,228]. Doniesiono o przypadku Szwedki, która miała ponad 34 amalgamaty i cierpiała na ALS. Po usunięciu tych plomb, wyzdrowiała [229]. Retrospektywne stadium ujawniło statystycznie znaczący związek między większą ilością amalgamatów i ryzykiem chorób neuronów motorycznych [218].

“Choroba amalgamatowa” i wskaźniki wrażliwości

Pomiędzy najczęściej zgłaszanymi objawami choroby amalgamatowej są: chroniczne zmęczenie, bole głowy, migreny, zwiększona podatność na infekcje, ból mięśni, brak koncentracji, zaburzenia trawienia, zaburzenia snu, słaba pamięć, bóle stawów, depresje, zaburzenia pracy serca, rozregulowanie układu wegetatywnego, zaburzenia nastroju i inne [161,215,216,230-234].

Do niedawna nie było możliwe rozróżnienie pomiędzy osobami „wrażliwymi na amalgamaty” i „odpornymi na amalgamaty” poprzez zmierzenie poziomów rtęci w ich krwi czy moczu albo testy skórne [9,21]. Jednakże udowodniono, że niektóre osoby mogą reagować na test skórny zaburzeniami psychopatycznymi, chociaż nie było alergicznej reakcji na skórze [235]. Dodatkowo granulocyty neutrofilowe u osób podatnych na amalgamaty reagowały inaczej niż u osób odpornych [236], jak również ujawniono różną aktywność dysmutazy nadtlenkowej [237].

Zwiększona podatnośc na rtęć i amalgamaty

SCENIHR nie wspomniał o parametrach podatności, które sprawiają, że pewna część populacji jest wrażliwa na rtęć z amalgamatów:

a) Odchylone od normy profile porfirynowe spowodowane ekspozycją na rtęć

Wiadomo, że rtęć prowadzi do odchylonych od normy profile porfirynowych w moczu u dentystów [238] i dzieci z autyzmem, a te odchylenia zostały odwrócone po chelatowaniu dzieci [239-241].

Genetyczny polimorfizm koproporfirynoksydazy (CPOX4) [188,201] prowadzi do zwiększonej podatności na rtęć i do zwiększonego ryzyka problemów neurobehawioralnych [242].

Najistotniejsza kwestia to efekt ekspozycji na opary rtęci na profile porfirynowe w mózgu, gdyż odchylenie od normy w przypadku hemu w mózgu jest powiązan z niemożliwością usunięcia protein beta-amyloidalnych z komórek mózgu, co może doprowadzić do choroby Alzheimera [243].

Należy wspomnieć, że porfiryny prowadzą do hemu, który jest kluczowy dla licznych mechanizmów biochemicznych: (i) jest kofaktorem dostarczającym tlen do hemoglobiny, (ii) jest kluczowym kofaktorem dla enzymów klasy P450 odpowiedzialnych za detoksykację ksenobiotyków z organizmu, (iii) jest niezbędnym kofaktorem dla jednego z kompleksów transportujących elektrony w mitochondriach i syntezy ATP.

Dlatego zahamowanie produkcji hemu przez rtęć może mieć dalej idące efekty powodujące różne choroby i zaburzenia.

Pomimo faktu, że 85% dentystów i techników stomatologicznych wykazało zmiany odpowiadające toksyczności rtęci zarówno w parameytrach biologicznych, jak i behawioralnych, a 15% wykazało zwiększony poziom deficytów neurologicznych z polimorfizmem genu CPOX4, organizacje stomatologiczne i SCENIHR wciąż utrzymują, że amalgamaty nie powodują żadnych znaczących problemów medycznych, bo poziomy rtęci w moczu oraz krwi są poniżej limitów bezpieczeństwa.

b) Pochodzący z mózgu czynnik neutroficzny

Inny polimorfizm genetyczny pochodzącego z mózgu czynnika neutroficznego (brain derived neurotrophic factor  - BNDF) zwiększa również podatność na ekspozycję na rtęć na niskich poziomach [186,187].

c) Zróżnicowane apolipoproteiny E

Wykazano, że osoby wrażliwe na amalgamaty częściej są nosicielami alleli apolipoproteiny E4 (APO-E4) niż osoby bez objawów i rzadziej są nosicielami APO-E2 [231,234]. APO-E4 to znany duży czynnik ryzyka przy chorobie Alzheimera, a APO-E2 zmniejsza to ryzyko. Postuluje się, że jest tak z powodu różnicy w możliwości usuwania metali ciężkich z płynu mózgowo-rdzeniowego [44,92,102,124,231,234,244]. APO-E2 posiada dwie cysteiny z wiążącymi metale grupami sulfhydrylowymi, a APO-E4 nie składa się z cysteiny.

d) Metabolizm glutationu

Zredukowany glutation (GSH) to główny naturalny chelator metali ciężkich z uwagi na fakt, że zawiera cysteinę zawierającą sulfhydryl. Tylko rtęć, która wiąże się z glutationem (lub selenem), może opuścić ciało poprzez wydalanie z moczem albo kałem. Wysoki poziom glutationu jest dlatego niezbędny przy metabolizmie rtęci. Opisano, że polimorfizmy w genach prowadziły do obniżonej produkcji GSH i powodowały większą retencję rtęci organicznej i nieorganicznej w organizmie. Inne czynniki, które mogą zwiększać podatność na małe dawki rtęci to np niski poziom selenu, niewłaściwa reakcja granulocytów neutrofilowych, aktywność dysmutazy nadtlenkowej, syntetaza metioninowa pozytywna względem receptoru D4 i upośledzone ścieżki metylacyjne (około 15% populacji), prowadzą do zmniejszenia substancji chroniących przed rtęcią, jak S-adenyl-metionina, cysteina, GSH i metalotionina [44,245-247].

Poprawa po usunięciu plomb amalgamatowych

Znacząca poprawa zdrowia i ww. chorób (w tym stwardnienia rozsianego i innych chorób autoimmunologicznych) miała miejsce po usunięciu plomb amalgamatowych (w wielu badaniach przedsięwzięto środki ochronne minimalizujące ekspozycję na rtęć) [68,147,149,150,159,161,217,230,233,234,248-251].

Nie ma zaburzeń neurorozwojowych spowodowanych przez rtęć?

SCENIHR stwierdził, że “nie ma dowodu związku przyczynowego pomiędzy plombami amalgamatowymi a autyzmem ” i “… nie ustalono żadnego powiązania między szczepionkami, tiomersalem i autyzmem “.

Niezależnie od tego autorzy doszli do przeciwnych wniosków:

“…ekspozycja na rtęć zmieniła ilość komórek i ich podział; jest to postulowane jako możliwe podłoże zaobserwowanych niekorzystnych efektów w rozwoju neuronów. Potencjalne implikacje takich obserwacji są oczywistem gdy ocenia się je w kontekście badań, które wykazały, że zmieniona proliferacja komórek i efekty neuropatologiczne są powiązane ze specyficznymi deficytami neurobehawioralnymi (np. autyzmem).” [252]

Cheuk and Wong (2006) u pacjentów zdiagnozowanych z ADHD oraz Desoto i Hitlan (2007) u pacjentów zdiagnozowanych z ASD ustalili znacznie wyższy poziom rtęci we krwi w porównaniu do grupy kontrolnej [253,254]. Adams et al. (2007) zaobserwowali znaczący wzrost poziomów rtęci u ząbków mlecznych dzieci z autyzmem w porównaniu z grupą kontrolną [255]. Rtęć w ząbkach mlecznych odzwierciedla ekspozycję na rtęć w łonie matki.

Ostatnie badania patologiczne mózgu ujawniły podwyższone poziomy rtęci i związany z tym stress oksydacyjny u pacjentów z autyzmem. Poziomy rtęci w moczu dzieci z autyzmem były zwiększone 3-5 krotnie po podaniu DMSA w porównaniu do dzieci zdrowych [259]. Dzieci autystyczne wydalają też większe stężenia koproporfiryny, co jest specyficzne dla zatrucia rtęcią [239,240,260,261]. Detoksykacja rtęci przy wykorzystaniu DMSA normalizuje te poziomy koproporfiryny u dzieci z autyzmem [239,240] i prowadzi do poprawy objawów [262]. Dodatkowo badania ekserymentalne i epidemiologiczne wykazały, że ekspozycja na rtęć jest odpowiedzialna za autyzm albo za pogarszanie się zaburzeń. Prenatalna ekspozycja na amalgamaty u matki [46,263], tiomersal przyjmowany przez matkę [46,264] i źródła po urodzeniu (rtęć ze szczepionek) w połączeniu z genetyczną podatnością mogą uruchomić autyzm. W eksperymentach na zwierzętach, wstrzyknięcie tiomersalu powodowało objawy podobne do autystycznych [265]. Studia epidemiologiczne potwierdzajmą znaczący związek między ekspozycją na niskie dawki rtęci i zaburzeina neurorozwojowe [266][267][268][269][270][271]. Dzieci z autyzmem mają niższe poziomy glutationu [272]; wiadomo że może to spowodować rtęć [273]. W niektórych wstępnych studiach poświęconych chelatacji dowiedziono, że prowadzi ona do poprawy stanu dziecka [263]. Autism Research Institute wymienia dlatego chelatację jako najbardziej skuteczną terapię pomiędzy 88 terapiami, w tym 53 opartymi na lekach [274].

Zahir et al. (2005) opisuje dostęp rtęci

“…do człowieka przez różne drogi; powietrze, wodę, pożywienie, kosmetyki i nawet szczepionki, co zwiększa ekspozycję. Płody i noworodki są bardziej podatne na toksyczność rtęci. Matki przyjmujące rtęćw pożywieniu przekazują ją dzieciom przez mleko z piersi. U dzieci narażonych na ekspozycję na niby bezpieczne poziomy rtęci ujawniono zmniejszone umiejętności motoryczne i gorszą pamięć [...] Rtęć jest powodem różnych zaburzeń, neurologicznych, nefrologicznych, immunologicznych, krążeniowych, ruchowych, rozrodczych a nawet genetycznych. Ostatnio toksyczność rtęci wiąże się z chorobą Alzheimera, Parkinsona, autyzmem, toczniem, ALS itp.”[275].

Niektóre badania, które nie potwierdziły związku między rtęcią a autyzmem, mają poważne błędy metodyczne [245].

Poważne błędy metodyczne w badaniach cytowanych przez SCENIHR jako dowód na bezpieczeństwo amalgamatów

Aby przestudiować efekt toksyczny, należy porównać przynajmniej dwie próbki: poddaną ekspozycji na substancję i taką, która nie została jej poddana. Głównym problemem w wielu badaniach nad amalgamatami jest to, że większość nie opiera się na prawdziwej grupie roboczej, która nigdy nie była narażona na ekspozycję na amalgamaty, Nawet porównanie próbek osób z plombami oraz bez plomb, próbka osoby bez plomb mogła być poddana ekspozycji na amalgamaty we wcześniejszym okresie życia. Studia często cytowane nie tylko przez SCENIHR jako dowód nieszkodliwości amalgamatów nie brały pod uwagę właściwych grup kontrolnych. Można opisać następujący przykład:

Szwedzkie badania nad bliźniętami [276] porównały w zasadzie 57 par bliźniąt a nie 587 jak opisują autorzy i różne instytucje rządowe. Średni wiek próbki wynosił 66 lat, w trakcie badania 25% nie miało już zębów, u wielu osób były braki w uzębieniu, a nieokreślona ilość miała koronki. Nie oszacowano w ilu przypadkach, wypełniono amalgamatem korzenie pod koronkami i czy znajdowały się pod nimi jakieś plomby amalgamatowe. Te osoby jako rzekomą grupę „bez amalgamatów” porównano z tymi, które miały aktualnie plomby amalgamatowe. Autorzy ustalili, że osoby z plombami amalgamatowymi (a zatem mające więcej własnych zębów) mają lepszy stan zdrowia. Należy przypuszczać, że osoby bez zębów albo z niewieloma zębami albo zębami naprawianymi koronkami czy mostkami już wcześniej były poddane ekspozycji na rtęć z amalgamatów. Jako, że rtęć kumuluje się w tkankach ciała ta grupa „bez amalgamatów” mogła mieć większe obciążenie niż grupa z aktualnie istniejącymi amalgamatami.

SCENIHR zacytował też Zimmera et al. (2002) jako dowód bezpieczeństwa amalgamatów. Ale te badania porównały dwie grupy poddane ekspozycji na amalgamaty (same kobiety, jedna grupa cierpiała na objawy, które wiązała z amalgamatami a druga nie zgłaszała związku między swoimi schorzeniami i amalgamatami) w sensie poziomów rtęci w płynach ciała i testów psychometrycznych. Średnia ilość plomb amalgamatowych była identyczna w obu grupach. Zimmer et al. (p. 210) dochodzą do wniosku: “Z tego powodu rtęć uwalniana z plomb amalgamatowych nie była prawdopodobną przyczyną zaburzeń zgłaszanych przez osoby wrażliwe na rtęć ” [21]. Nie jest jasne, jak ci autorzy doszli do takiego wniosku. Co więcej wiadomo z eksperymentów na zwierzętach i studiów farmakologicznych że osoby, którym podano równą dawkę toksyny mogą różnie zareagować. Przykładem jest to, że nie każdy palacz rozwija u siebie raka płuc, chociaż palenie jest przyjmowane jako główna przyczyna raka.

“Próby amalgamatowe u dzieci”

SCENIHR oparł swoje twierdzenia o bezpieczeństwie amalgamatów również na dwóch próbach u dzieci. Te badania mają szereg poważnych błędów metodologicznych:

W dwóch randomizowanych próbach na dzieciach oszacowano, czy amalgamaty prowadizły do pogorszenia neuropsychologicznego lub funkcji nerek [277,278]. Zdrowym dzieciom losowo umieszczono amalgamaty albo plomby kompozytowe. Dwoje dzieci w grupie z amalgamatami zmarło (jedno prawdopodobnie popełniło samobójstwo) I zostało wykluczonych z badań.

Wyliczenie (ilość efektów ubocznych minus brak takich efektów) wskazuje, że zaburzenia psychologiczne, które występowały u 6.7% dzieci z plombami kompozytowymi, musiałyby wystąpić przynajmniej u 14.5% dzieci z amalgamatami aby było 80% szans, że zostaną statystycznie udowodnione (zaobserwowano 9.0%). Podobnie schorzenia neurologiczne, zaobserwowana częstotliwość w grupie z plombami kompozytowymi (0.4% kompozyty, 1.5% amalgamaty) musiałyby wystąpić przynajmniej u 4.5% dzieci z amalgamatami, aby był to efekt znaczący. Autorzy doszli do wniosku, że “nie ma powodu zaprzestawać używania amalgamatów ” [277] i że “amalgamaty [...] emitują małe ilości oparów rtęci ” [278].

Pierwszy wniosek to klasyczny błąd: z uwagi na małą grupę, studium doprowadziło do fałszywego wniosku, że amalgamaty są bezpieczne. Aby skutecznie zewaluować taki rozmiar efektów ubocznych, grupa powinna być o wiele większa (1500-2500/na grupę).

Nie zmierzono porfiryn w moczu i markerów stresu oksydacyjnego, które są podwyższone u osób z amalgamatami [19,119]. Nadto genetyczne polimorfizmy, które zwiększają podatność na rtęć, jak polimorfizm BDNF [186,188] i genu GST [279] również nie zostały zmierzone. Co więcej, właściwa ekspozycja na rtęć (opary emitowane w jamie ustnej) nie została oszacowana, co kwestionuje etykę tych badań. Badania wykazały, że emisja oparów rtęci była o wiele wyższa niż oszacowana przez dentystów. Chew et al. (1991) wykazali, że 43.5 mikrogramów/cm2/dzień rtęci było wydzielanych z “amalgamatów rzekomo nie wydzielających rtęci” I ilość ta pozostała nzmieniona przez 2 lata badań [280].

Średnie poziomy rtęci w moczu były znacząco wyższe w grupie z amalgamatami [277,278], chociaż w latach 3 do 7 poziomy rtęci w moczu u osób z amalgamatami zaczęły spadać aż doszły do poziomu u dzieci bez amalgamatów [278]. Ale w latach 6 i 7 przeprowadzono leczenie zachowawcze, które powinno było zwiększyć albo przynajmniej utrzymać te same poziomy  rtęci w moczu. To wymaga wyjaśnienia. W badaniach Chewa [280], ilość rtęci wypuszczanej z amalgamatów była stała przez 2 lata (okres badawczy). Wiadomo, że amalgamaty nie przestają wypuszczać rtęci w ciągu 7 lat. Powstaje pytanie, czym spowodowany był spadek po roku drugim? Poziomy rtęci w moczu określają ilość rtęci wydalanej tą drogą. Dlatego po dwóch latach ekspozycji na rtęć wydalanie przez nerki jest mniej efektywne. Jest to spójne ze znanym faktem, ze zwiększona ekspozycja na rtęć uniemożliwia jej wydalanie. Opublikowano i zweryfikowano, że ponad 90% rtęci wydalanej jest przez ludzi z żółcią w wątrobie i dalej w kale, a nie w moczu [13]. Wniosek Bellingera et al. [277] brzmi “nie ma powodu zaprzestać użycia rtęci ” i jest zadziwiający, bo możliwe efekty uboczne mogą się pojawić po dłuższym okresie niż 5 lat. Jeśli rtęć ma wpływ na patogenezę choroby Alzheimera, to może minąć 50 lat zanim rozpozna się klinicznie chorobę [44].

Jednym z kryteriów obydwu badań było “brak innych efektów zdrowotnych” w tym zaburzeń neurorozwojowych. Centrum Chorób Zakaźnych i Prewencji (CDC) w Atlancie (USA) donosi, że 1 na 6 dzieci amerykańskich ma zaburzenia neurorozwojowe. Niezależnie od tego, obydwa wymienione badania prezentują wnioski, że amalgamaty powinny pozostać odstępną opcją w opiece dentystycznej [278] i nie wyłączają dzieci z zaburzeniami rozwojowymi od stosowania amalgamatów – chociaż ten typ dzieci wyłączono z badań. Jako, że ekspozycja na rtęć podczas ciąży może być główną przyczyną zaburzeń neurorozwojowych [46,61,245], taki wniosek odnośnie amalgamatów u dzieci jest niebezpieczny dla społeczeństwa.

Amalgamaty a zanieczyszczenie rtęcią

W ciągu ostatnich dziesięcioleci odnotowano alarmujący wzrost rtęci w środowisku [281] i ciałach ludzi [282]. UNEP donosi o 305 krotnym wzroście przez ostatnie 25 lat [281].

W Unii Europejskiej używa się 120 ton amalgamatu rocznie. Drugą największą grupą użytkowników w Unii są dentyści [283,284].

Ostatnie wyliczenia Hylandera [284,285] wykazały, że w zębach Szwedów znajduje się 40 ton rtęci w amalgamatach, co powoduje wydalanie 100 kg rtęci rocznie ze ściekami. 1300 do 2200 ton rtęci w amalgamatach znajduje się w zębach obywateli UE (27 krajów) [284], a dla USA liczba ta wynosi około 1000 ton. W USA amalgamaty to trzecie największe źródło rtęci w środowisku [286]. W przeciwieństwie do UE usunięte amalgamaty nie są oddzielone od odpadów kanalizacyjnych w klinikach w USA. Ale nawet w UE, gdzie oddziela się je w ten sposób, część amalgamatu dostaje się do środowiska [284].

Ta rtęć z amalgamatów (np. emisje rtęci z klinik do ścieków, wydzielona rtęć z amalgamatów u żyjących osób, rtęć wydzielana z amalgamatów osób zmarłych pochowanych i podczas ich kremacji) wchodzi do środowiska. Włączając koszty środowiskowe do kalkulacji ekonomicznej (bez kosztów chorób spowodowanych przez amalgamaty), amalgamaty są najbardziej kosztownym materiałem dentystycznym, czego dowiedli Hylander i Godsite [283].

Rola organizacji dentystycznych w SCENIHR i w obronie amalgamatów

Grupa ekspercka SCENIHR zajmująca się amalgamatami składała się z inżyniera (przewodniczący), czterech dentystów, toksykologa i dwóch weterynarzy. Przewodniczący ma ścisły kontakt z przemysłem. Nie zaproszono ekspertów z zakresu medycyny czy medycyny środowiskowej. Należy się zastanowić, dlaczego dentyści byli tak silnie reprezentowani w SCENIHR.

Z powodu swojego wykształcenia i doświadczenia klinicznego dentyści nie są zdolni do oceny medycznych systemowych efektów ubocznych spowodowanych przez amalgamaty, jak stwardnienie rozsiane, autyzm, choroby autoimmunologiczne, choroba Alzheimera, choroby psychiczne itp. Wykorzystanie amalgamatów zwiększa się na całym świecie (zwiększająca się epidemia próchnicy w krajach nierozwiniętych, w których mieszka największy odsetek populacji). Dzisiaj organizacje stomatologiczne to jedyna grupa pracowników służby zdrowia, którzy promują product złożony głównie z rtęci. Każdy patent amalgamatowy został wyprodukowany zgodnie ze specyfikacjami organizacji dentystycznych [287,288]. Może być to istotny element, gdyż organizacje dentystyczne, które zawsze wspierały wykorzystanie amalgamatów, są odpowiedzialne na efekty uboczne [287,288]. Dlatego ich strategie polegały na wpływaniu na naukowców i polityków przez ostatnie dekady [287-290] i są analogiczne do innych dobrze znanych tematów, gdzie istnieją konflikty interesów, a skuteczne środki zostały zastosowane w ceu wpłynięcia na naukowców i polityków w odniesieniu do niebezpiecznych produktów [291-295].

Interesy konkurencyjne

Autor deklaruje, że nie prowadzi konkurencyjnych interesów.

Bibliografia

  1. Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR): The safety of dental amalgam and alternative dental restoration materials for patients and users. [http:/ / ec.europa.eu/ health/ ph_risk/ committees/ 04_scenihr/ docs/ scenihr_o_016.pdf] webciteEuropaen Commision 2008, 1-74. OpenURL
  2. Barregard J, Svalander C, Schutz A, Westberg G, Sällsten G, Blohmé I, Mölne J, Attman PO, Haglind P: Cadmium, mercury, and lead in kidney cortex of the general Swedish population: a study of biopsies from living kidney donors. Environ Health Perspect 1999, 107:867-871. PubMed Abstract | PubMed Central Full Text OpenURL
  3. Becker K, Kaus S, Krause C, Lepom P, Schulz C, Seiwert M, Seifert B: German Environmental Survey 1998 (GerES lll): environmental pollutants in blood of the German population. Int J Hyg Environ Health 2002, 205:297-308. PubMed Abstract | Publisher Full Text OpenURL
  4. Becker K, Schulz C, Kaus S, Seiwert M, Seifert B: German Environmental Survey 1998 (GerES III): Environmental pollutants in the urine of the German population. Int J Hyg Environ Health 2003, 206:15-24. PubMed Abstract | Publisher Full Text OpenURL
  5. Drasch G, Schupp I, Riedl G, Günther G: Einfluß von Amalgamfüllungen auf die Quecksilberkonzentration in menschlichen Organen. Dtsch Zahnärztl Z 1992, 47:490-496. OpenURL
  6. Drasch G, Schupp I, Hofl H, Reinke R, Roider G: Mercury burden of human fetal and infant tissues. Eur J Ped 1994, 153:607-610. Publisher Full Text OpenURL
  7. Drasch G, Wanghofer E, Roider G: Are blood, urine, hair, and muscle valid bio-monitoring parameters for the internal burden of men with the heavy metals mercury, lead and cadmium? Trace Elem Electrolyt 1997, 14:116-123. OpenURL
  8. Eggleston DW, Nylander M: Correlation of dental amalgam with mercury in brain tissue. J Prosth Dent 1987, 58:704-707. Publisher Full Text OpenURL
  9. Gottwald B, Traencker I, Kupfer J, Ganss C, Eis D, Schill WB, Gieler U: “Amalgam disease” — poisoning, allergy, or psychic disorder? Int J Hyg Environ Health 2001, 204:223-229. PubMed Abstract | Publisher Full Text OpenURL
  10. Guzzi G, Grandi M, Cattaneo C: Should amalgam fillings be removed? Lancet 2002, 360:2081. PubMed Abstract | Publisher Full Text OpenURL
  11. Guzzi G, Grandi M, Cattaneo C, Calza S, Minoia C, Ronchi A, Gatti A, Severi G: Dental amalgam and mercury levels in autopsy tissues: food for thought. Am J Forensic Med Pathol 2006, 27:42-45. PubMed Abstract | Publisher Full Text OpenURL
  12. Levy M, Schwartz S, Dijak M, Weber JP, Tardif R, Rouah F: Childhood urine mercury excretion: dental amalgam and fish consumption as exposure factors. Environ Res 2004, 94:283-290. PubMed Abstract | Publisher Full Text OpenURL
  13. Lorscheider FL, Vimy MJ, Summers AO: Mercury exposure from “silver” tooth fillings: emerging evidence questions a traditional dental paradigm. FASEB Journal 1995, 9:504-508. PubMed Abstract | Publisher Full Text OpenURL
  14. Kingman A, Albertini T, Brown LJ: Mercury concentrations in urine and whole blood associated with amalgam exposure in a US military population. J Dent Res 1998, 77:461-471. PubMed Abstract | Publisher Full Text OpenURL
  15. Mortada WI, Sobh MA, El-Defrawy MM, Farahat SE: Mercury in dental restoration: is there a risk of nephrotoxicity? J Nephrol 2002, 15:171-176. PubMed Abstract OpenURL
  16. Nylander M: Mercury in pituitary glands of dentists. Lancet 1986, 22:442. Publisher Full Text OpenURL
  17. Nylander M, Weiner J: Mercury and selenium concentrations and their interrelations in organs from dental staff and the general population. Br J Ind Med 1991, 48:729-734. PubMed Abstract | PubMed Central Full Text OpenURL
  18. Nylander M, Friberg L, Lind B: Mercury concentrations in the human brain and kidneys in relation to exposure from dental amalgam fillings. Swed Dent J 1987, 11:179-187. PubMed Abstract OpenURL
  19. Pizzichini M, Fonzi M, Giannerini M, Mencarelli M, Gasparoni A, Rocchi G, Kaitsas V, Fonzi L: Influence of amalgam fillings on Hg levels and total antioxidant activity in plasma of healthy donors. Sci Total Environ 2003, 301:43-50. PubMed Abstract | Publisher Full Text OpenURL
  20. Weiner JA, Nylander M: The relationship between mercury concentration in human organs and different predictor variables. Sci Tot Environ 1993, 138:101-115. Publisher Full Text OpenURL
  21. Zimmer H, Ludwig H, Bader M: Determination of mercury in blood, urine and saliva for the biological monitoring of an exposure from amalgam fillings in a group with self-reported adverse health effects. Int J Hyg Environ Health 2002, 205:205-211. PubMed Abstract | Publisher Full Text OpenURL
  22. Danscher G, Hørsted-Bindsley P, Rungby J: Traces of mercury in organs from primates with amalgam fillings. Exp Mol Pathol 1990, 52:291-299. PubMed Abstract | Publisher Full Text OpenURL
  23. Galic N, Prpic-Mehicic G, Prester LJ, Blanusa M, Krnic Z, Ferencic Z: Dental amalgam mercury exposure in rats. Biometals 1999, 12:227-237. PubMed Abstract | Publisher Full Text OpenURL
  24. Galic N, Prpic-Mehicic G, Prester LB, Krnic Z, Blanusa M, Erceg D: Elimination of mercury from amalgam in rats. J Trace Elem Med Biol 2001, 15:1-4. PubMed Abstract | Publisher Full Text OpenURL
  25. Hahn LJ, Kloiber R, Vimy MJ, Takahashi Y, Lorscheider FL: Dental “silver” tooth fillings: a source of mercury exposure revealed by whole-body image scan and tissue analysis. FASEB Journal 1989, 3:2641-2646. PubMed Abstract | Publisher Full Text OpenURL
  26. Hahn LJ, Kloiber R, Leininger RW, Vimy M, Lorscheider FL: Whole-body imaging of the distribution of mercury released from dental fillings into monkey tissues. FASEB Journal 1990, 4:3256-3260. PubMed Abstract OpenURL
  27. Lorscheider FL, Vimy MJ: Mercury exposure from “silver” fillings. Lancet 1991, 337:1103. PubMed Abstract | Publisher Full Text OpenURL
  28. Vimy MJ, Takahashi Y, Lorscheider FL: Maternal-fetal distribution of mercury (203 Hg) released from dental amalgam fillings. Am J Physiol 1990, 258:939-945. OpenURL
  29. Heintze U, Edwardsson S, Derand T, Birkhed D: Methylation of mercury from dental amalgam and mercuric chloride by oral streptococci in vitro. Scand J Dent Re 1983, 91:150-152. OpenURL
  30. Leistevuo J, Leistevuo T, Helenius H, Pyy L, Osterblad M, Huovinen P, Tenovuo J: Dental amalgam fillings and the amount of organic mercury in human saliva. Caries Res 2001, 35:163-166. PubMed Abstract | Publisher Full Text OpenURL
  31. Yannai S, Berdicevsky I, Duek L: Transformations of inorganic mercury by Candida albicans and Saccharomyces cerevisiae. Appl Environ Microbiol 1991, 57:245-247. PubMed Abstract | PubMed Central Full Text OpenURL
  32. Leong CCW, Syed NI, Lorscheider FL: Retrograde degeneration of neurite membrane structural integrity of nerve growth cones following in vitro exposure to mercury. Neuro Report 2001, 12:733-737. OpenURL
  33. Olivieri G, Brack C, Muller-Spahn F, Stähelin HB, Herrmann M, Renard P, Brockhaus M, Hock C: Mercury induces cell cytotoxicity and oxidative stress and increases beta-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells. J Neurochem 2000, 71:231-236. OpenURL
  34. Olivieri G, Novakovic M, Savaskan E, Meier F, Baysang G, Brockhaus M, Müller-Spahn F: The effects of ß-Estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and ß-Amyloid secretion. Neuroscience 2002, 113:849-855. PubMed Abstract | Publisher Full Text OpenURL
  35. Pendergrass JC, Haley BE: Mercury-EDTA Complex Specifically Blocks Brain-Tubulin-GTP Interactions: Similarity to Observations in Alzheimer’s Disease. In Status Quo and Perspective of Amalgam and Other Dental Materials. International Symposium Proceedings. Edited by Friberg LT, Schrauzer GN. Stuttgart: Thieme Verlag; 1995:98-105. OpenURL
  36. Pendergrass JC, Haley BE: Inhibition of brain tubulin-guanosine 5′-triphosphate interactions by mercury: similarity to observations in Alzheimer’s diseased brain. In MetalIons on Biological systems. Edited by Sigel A, Sigel H. New York: Dekker; 1997:461-478. OpenURL
  37. Björkman L, Lundekvam BF, Laegreid T: Mercury in human brain, blood, muscle and toenails in relation to exposure: an autopsy study. Environ Health 2007, 11:6:30. OpenURL
  38. Wenstrup D, Ehmann WD, Markesbery WR: Trace element imbalances in isolated subcellular fractions of Alzheimer’s disease brains. Brain Research 1990, 533:125-31. PubMed Abstract | Publisher Full Text OpenURL
  39. Ehmann WD, Markesbery WR, Alauddin M, Hossain TIM, Brubakern EH: Brain trace elements in Alzheimer’s disease. Neurotoxicology 1986, 7:197-206. PubMed Abstract OpenURL
  40. Thompson CM, Markesbery WR, Ehmann WD, Mao YX, Vance DE: Regional brain trace-element studies in Alzheimer’s disease. Neurotoxicology 1988, 9:1-8. PubMed Abstract OpenURL
  41. Saxe SR, Wekstein MW, Kryscio RJ, Henry RG, Cornett CR, Snowdon DA, Grant FT, Schmitt FA, Donegan SJ, Wekstein DR, Ehmann WD, Markesbery WR: Alzheimer’s disease, dental amalgam and mercury. J Am Dent Ass 1999, 130:191-199. PubMed Abstract | Publisher Full Text OpenURL
  42. Cornett CR, Ehmann WD, Wekstein DR, Markesbery WR: Trace elements in Alzheimer’s disease pituitary glands. Biol Trace Element Res 1998, 62:107-114. Publisher Full Text OpenURL
  43. Braak H: Neuroanatomy of Alzheimer’s disease. Alzheimer’s Disease Review 1997, 3:235-47. OpenURL
  44. Mutter J, Naumann J, Sadaghiani C, Schneider R, Walach H: Alzheimer Disease: Mercury as a pathogenic factor and apolipoprotein E as a moderator. Neuro Endocrinol Lett 2004, 25:275-283. OpenURL
  45. Ask K, Akesson A, Berglund M, Vahter M: Inorganic mercury and methylmercury in placentas of Swedish women. Environ Health Perspect 2002, 110:523-526. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  46. Holmes AS, Blaxill MF, Haley BE: Reduced levels of mercury in first baby haircuts of autistic children. Int J Toxicol 2003, 22:277-85. PubMed Abstract | Publisher Full Text OpenURL
  47. Morgan DL, Chanda SM, Price HC, Fernando R, Liu J, Brambila E, O’Connor RW, Beliles RP, Barone S Jr: Disposition of inhaled mercury vapor in pregnant rats: maternal toxicity and effects on developmental outcome. Toxicol Sci 2002, 66:261-273. PubMed Abstract | Publisher Full Text OpenURL
  48. Takahashi Y, Tsuruta S, Hasegawa J, Kameyama Y, Yoshida M: Release of mercury from dental amalgam fillings in pregnant rats and distribution of mercury in maternal and fetal tissues. Toxicology 2001, 163:115-126. PubMed Abstract | Publisher Full Text OpenURL
  49. Takahashi Y, Tsuruta S, Arimoto M, Tanaka H, Yoshida M: Placental transfer of mercury in pregnant rats which received dental amalgam restorations. Toxicology 2003, 185:23-33. PubMed Abstract | Publisher Full Text OpenURL
  50. Vahter M, Akesson A, Lind B, Bjors U, Schutz A, Berglund F: Longitudinal study of methylmercury and inorganic mercury in blood and urin of pregnant and lactating women, as well as in umbilical cord blood. Environ Res 2000, 84:186-194. PubMed Abstract | Publisher Full Text OpenURL
  51. Yoshida M, Satoh M, Shimada A, Yamamoto E, Yasutake A, Tohyama C: Maternal-to-fetus transfer of mercury in metallothionein-null pregnant mice after exposure to mercury vapor. Toxicology 2002, 175:215-222. PubMed Abstract | Publisher Full Text OpenURL
  52. Yoshida M, Watanabe C, Satoh M, Yasutake A, Sawada M, Ohtsuka Y, Akama Y, Tohyama C: Susceptibility of Metallothionein-Null Mice to the Behavioural Alterations Caused by Exposure to Mercury Vapour at Human-Relevant Concentration. Toxicol Sci 2004, 80:69-73. PubMed Abstract | Publisher Full Text OpenURL
  53. Luglie PF, Campus G, Chessa G, Spano G, Capobianco G, Fadda GM, Dessole S: Effect of amalgam fillings on the mercury concentration in human amniotic fluid. Arch Gynecol Obstet 2005, 271:138-142. PubMed Abstract | Publisher Full Text OpenURL
  54. Drasch G, Aigner S, Roider G, Staiger F, Lipowskyn G: Mercury in human colostrum and early breast milk. Its dependence on dental amalgam and other factors. J Trace Elem Med Biol 1998, 12:23-27. PubMed Abstract OpenURL
  55. Oskarsson A, Schultz A, Skerfving S, Hallen IP, Ohlin B, Lagerkvist BJ: Total and inorganic mercury in breast milk in relation to fish consumption and amalgam in lactating women. Arch Environ Health 1996, 51:234-241. PubMed Abstract | Publisher Full Text OpenURL
  56. Vimy MJ, Hooper DE, King WW, Lorscheider FL: Mercury from maternal “silver” tooth fillings in sheep and human breast milk. A source of neonatal exposure. Biol Trace Element Res 1997, 56:143-152. Publisher Full Text OpenURL
  57. Waly M, Olteanu H, Banerjee R, Choi SW, Mason JB, Parker BS, Sukumar S, Shim S, Sharma A, Benzecry JM, Power-Charnitsky VA, Deth RC: Activation of methionine synthase by insulin-like growth factor and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol Psychiatry 2004, 9:358-370. PubMed Abstract | Publisher Full Text OpenURL
  58. Deth RC: Truth revealed: New scientific discoveries regarding mercury in medicine and autism. Congression Testimony before the US House of Representatives. Subcommittee in human rights and wellness 2004. OpenURL
  59. Palkovicova L, Ursinyova M, Masanova V, Yu Z, Hertz-Picciotto I: Maternal amalgam dental fillings as the source of mercury exposure in developing fetus and newborn. J Expo Sci Environ Epidemiol 2008, 18(Suppl 3):326-331. PubMed Abstract | Publisher Full Text OpenURL
  60. Unuvar E, Ahmadov H, Kiziler AR: Mercury levels in cord blood and meconium of healthy newborns and venous blood of their mothers: Clinical, prospective cohort study. Sci Total Environ 2007, 374(Suppl 1):60-70. PubMed Abstract | Publisher Full Text OpenURL
  61. Jedrychowski W, Jankowski J, Flak E, Skarupa A, Mroz E, Sochacka-Tatara E, Lisowska-Miszczyk I, Szpanowska-Wohn A, Rauh V, Skolicki Z, Kaim I, Perera F: Effects of prenatal exposure to mercury on cognitive and psychomotor function in one-year-old infants: epidemiologic cohort study in Poland. Ann Epidemiol 2006, 16:439-447. PubMed Abstract | Publisher Full Text OpenURL
  62. Stoz F, Aicham P, Jovanovic S, Steuer W, Mayer R: Ist ein generelles Amalgam-Verbot gerechtfertigt? [Is a generalized amalgam banning appropriate?]. Z Geburtsh Neonat 1995, 199:35-41. OpenURL
  63. Hargreaves RJ, Evans JG, Janota I, Magos L, Cavanagh JB: Persistant mercury in nerve cells 16 years after metallic mercury poisoning. Neuropath Appl Neurobiol 1988, 14:443-452. Publisher Full Text OpenURL
  64. Opitz H, Schweinsberg F, Grossmann T, Wendt-Gallitelli MF, Meyermann R: Demonstration of mercury in the human brain and other organs 17 years after metallic mercury exposure. Clin Neuropath 1996, 15:139-144. OpenURL
  65. Drasch G, Böse-O’Reilly S, Beinhoff C, Roider G, Maydl S: The Mt. Diwata study on the Philippines 1999 – assessing mercury intoxication of the population by small scale gold mining. Sci Total Environ 2001, 267:151-168. PubMed Abstract | Publisher Full Text OpenURL
  66. Drasch G, Böse-O`Reilly S, Maydl S, Roider G: Scientific comment on the German human biological monitoring values (HBM values) for mercury. Int J Hyg Environ Health 2002, 205:509-512. PubMed Abstract | Publisher Full Text OpenURL
  67. Drasch G, Böse-O’Reilly S, Maydl S, Roider G: Response to the letter of the Human Biomonitoring Commission. Int J Hyg Environ Health 2004, 207:183-184. Publisher Full Text OpenURL
  68. Stenman S, Grans L: Symptoms and differential diagnosis of patients fearing mercury toxicity from amalgam fillings. Scand J Work Environ Health 1997, 23:59-63. PubMed Abstract OpenURL
  69. Grandjean P, Weihe P, White R: Milestone development in infants exposed to methylmercury from human milk. Neurotoxicology 1995, 16:27-33. PubMed Abstract OpenURL
  70. Köhler W, Linde K, Halbach S, Zilker T, Kremers L, Saller R, Melchart D: Prognos in the diagnosos of amalgam hypersensitivity: a diagnostic case-control study. Forsch Komplement Med 2007, 14:18-24. OpenURL
  71. WHO: Mercury in Health Care. [http://www.who.int/water_sanitation_health/medicalwaste/mercurypolpaper.pdf] webcitePolicy Paper 2005. OpenURL
  72. Viola P, Cassano GB: The effect of chlorine on mercury vapor intoxication. Autoradiographic study. Med Lavoro 1968, 59:437-44. PubMed Abstract OpenURL
  73. Kishi R, Doi R, Fukuchi Y, Satoh H, Satoh T, Ono A, Moriwaka F, Tashiro K, Takahata N: Subjective symptoms and neurobehavioral performances of ex-mercury miners at an average of 18 years after the cessation of chronic exposure to mercury vapor. Mercury Workers Study Group. Environl Res 1993, 62:289-302. Publisher Full Text OpenURL
  74. Mathiesen T, Ellingsen DG, Kjuus H: Neuropsychological effects associated with exposure to mercury vapor among former chloralkali workers. Scand J Work Environ Health 1999, 25:342-350. PubMed Abstract OpenURL
  75. Meyer-Baron M, Schaeper M, Seeber A: A meta-analysis for neurobehavioral results due to occupational mercury exposure. Arch Toxicol 2002, 76:127-136. PubMed Abstract | Publisher Full Text OpenURL
  76. Piikivi L, Hanninen H, Martelin T, Mantere P: Psychological performance and long-term exposure to mercury vapors. Scand J Work Environ Health 1984, 10:35-41. PubMed Abstract OpenURL
  77. Roels H, Gennart JP, Lauwerys R, Buchet JP, Malchaire J, Bernard A: Surveillance of workers exposed to mercury vapour: validation of a previously proposed biological threshold limit value for mercury concentration in urine. Am J Ind Med 1985, 7:45-71. PubMed Abstract | Publisher Full Text OpenURL
  78. Smith PJ, Langolf GD, Goldberg J: Effects of occupational exposure to elemental mercury on short term memory. Br J Ind Med 1983, 40:413-419. PubMed Abstract | PubMed Central Full Text OpenURL
  79. Soleo L, Urbano ML, Petrera V, Ambrosi L: Effects of low exposure to inorganic mercury on psychological performance. Brit J Ind Med 1990, 47:105-109. OpenURL
  80. Williamson AM, Teo RK, Sanderson J: Occupational mercury exposure and its consequences for behaviour. Int Arch Occup Environ Health. 1982, 50:273-286. PubMed Abstract OpenURL
  81. Zavariz C, Glina DM: Clinico-neuro-psychological evaluation of workers exposed to metallic mercury in the electric lamp industry. Rev Saud Publica 1992, 26:356-65.(In Portugese with English abstract)OpenURL
  82. He F, Zhow X, Lin B, Xiung YP, Chen SY, Zhang SL, Ru JY, Deng MH: Prognosis of Mercury poisoning in mercury refinery workers. Ann Acad Med Singapore 1984, 13:389-393. PubMed Abstract OpenURL
  83. Kishi R, Doi R, Fukushi Y, Satoh H, Ono A: Residual neurobehavioural effects associated with chronic exposure to mercury vapour. Occup Environ Med 1994, 51:35-41. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  84. Kobal A, Horvat M, Prezelj M, Briski AS, Krsnik M, Dizdarevic T, Mazej D, Falnoga I, Stibilj V, Arneric N, Kobal D, Osredkar J: The impact of long-term past exposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners. J Trace Elem Med Biol 2004, 17:261-274. PubMed Abstract | Publisher Full Text OpenURL
  85. Letz R, Gerr F, Cragle D, Green R, Watkins J, Fidler A: Residual neurologic deficits 30 years after occupational exposure to elemental mercury. Neurotoxicology 2000, 21:459-474. PubMed Abstract OpenURL
  86. Sugita M: The biological half-time of heavy metals. The existence of a third, `slowest’ component. Int Arch Occup Environ Health 1978, 41:25-40. PubMed Abstract | Publisher Full Text OpenURL
  87. Takahata N, Hayashi H, Watanabe S, Anso T: Accumulation of mercury in the brains of two autopsy cases with chronic inorganic mercury poisoning. Folia Psychiatr Neurol Jpn 1970, 24:59-69. PubMed Abstract OpenURL
  88. Stoiber T, Bonacker D, Bohm K: Disturbed microtubule function and induction of micronuclei by chelate complexes of mercury(II). Mutat Res 2004, 563:97-106. PubMed Abstract | Publisher Full Text OpenURL
  89. Stoiber T, Degen GH, Bolt HM, Unger E: Interaction of mercury(II) with the microtubule cytoskeleton in IMR-32 neuroblastoma cells. Toxicol Lett 2004, 151(Suppl 1):99-104. PubMed Abstract | Publisher Full Text OpenURL
  90. Thier R, Bonacker D, Stoiber T: Interaction of metal salts with cytoskeletal motor protein systems. Toxicol Lett 2003, 140:75-81. PubMed Abstract | Publisher Full Text OpenURL
  91. Duhr EF, Pendergrass JC, Slevin JT, Haley BE: HgEDTA complex inhibits GTP interactions with the E-site of brain beta-tubulin. Toxicol Appl Pharmacol 1993, 122:273-280. PubMed Abstract | Publisher Full Text OpenURL
  92. Pendergrass JC, Haley BE, Vimy MJ, Winfield SA, Lorscheider FL: Mercury vapor inhalation inhibits binding of GTP to tubulin in rat brain: similarity to a molecular lesion in Alzheimer diseased brain. Neurotoxicology 1996, 18:315-324. OpenURL
  93. Soares FA, Farina M, Santos FW, Souza D, Rocha JB, Nogueira CW: Interaction between metals and chelating agents affects glutamate binding on brain synaptic membranes. Neurochem Res 2003, 28:1859-1865. PubMed Abstract | Publisher Full Text OpenURL
  94. Aposhian HV, Morgan DL, Queen HL, Maiorino RM, Aposhian MM: Vitamin C, glutathione, or lipoic acid did not decrease brain or kidney mercury in rats exposed to mercury vapor. J Toxicol Clin Toxicol 2003, 41:339-347. PubMed Abstract | Publisher Full Text OpenURL
  95. Nogueira CW, Soares FA, Nascimento PC, Muller D, Rocha JB: 2,3-Dimercaptopropane-1-sulfonic acid and meso-2,3-dimercaptosuccinic acid increase mercury- and cadmium-induced inhibition of delta-aminolevulinate dehydratase. Toxicology 2003, 184:85-95. PubMed Abstract | Publisher Full Text OpenURL
  96. Ewan KB, Pamphlett R: Increased inorganic mercury in spinal motor neurons follwoing chelating agents. Neurotoxicology 1996, 17:343-349. PubMed Abstract OpenURL
  97. Harris HH, Pickering IJ, George GN: The chemical form of mercury in fish. Science 2003, 301:1203. PubMed Abstract | Publisher Full Text OpenURL
  98. Fredriksson A, Dencker L, Archer T, Danielsson BR: Prenatal coexposure to metallic mercury vapour and methylmercury produce interactive behavioural changes in adult rats. Neurotoxicol Teratol 1996, 18:129-134. PubMed Abstract | Publisher Full Text OpenURL
  99. Lettmeier B, Böse o, Reilly S, Drasch G: Proposal for a revised reference concentration (RFC) for mercury vapour in adults. Sci Total Environ 2010. OpenURL
  100. Richardson GM, Environment Division of SNC-Lavalin Inc (SLE), Ottawa (Canada).: Mercury exposure and risks from dental amalgam, part 1: updating exposure, reexamining reference exposure levels, and critically evaluating recent studies. [http:/ / iaomt.org/ articles/ files/ files329/ Amalgam%20Risk%20Assessment%20Part% 201.SLE%20reference%2010738.Final2. pdf] webcite2010. PubMed Abstract | Publisher Full Text OpenURL
  101. Schubert J, Riley EJ, Tyler SA: Combined effects in toxicology – a rapid systematic testing procedure: cadmium, mercury, and lead. J Toxicol Environ Health 1978, 4:763-776. PubMed Abstract | Publisher Full Text OpenURL
  102. Haley B: The relationship of toxic effects of mercury to exacerbation of the medical condition classified as alzheimer’s disease. [http://www.fda.gov/ohrms/dockets/dailys/02/Sep02/091602/80027dd5.pdf] webcite
  103. Ericson JE, Shirahata H, Patterson CC: Skeletal concentrations of lead in ancient Peruvians. N Engl J Med 1979, 300:946-951. PubMed Abstract | Publisher Full Text OpenURL
  104. Ericson JE, Smith DR, Flegal AR: Skeletal concentrations of lead, cadmium, zinc, and silver in ancient North American Pecos Indians. Environ Health Perspect 1991, 93:217-223. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  105. Drasch G: Lead burden in prehistorical, historical and modern human bones. Sci Total Environ 1982, 24:199-231. PubMed Abstract | Publisher Full Text OpenURL
  106. Patterson CC, Shirahata H, Ericson JE: Lead in ancient human bones and the relevance to historical developments of social problems with lead. Sci Total Environ 1987, 61:167-200. PubMed Abstract | Publisher Full Text OpenURL
  107. Patterson CC, Shirahata H, Ericson JE: Natural skeletal levels of lead in Homo sapiens sapiens uncontaminated by technological lead. Sci Total Environ 1991, 107:205-236. PubMed Abstract | Publisher Full Text OpenURL
  108. Haley B: Mercury toxicity: Genetic susceptibilities and synergistic effects. Medical Veritas 2005, 2:535-542. Publisher Full Text OpenURL
  109. Haley B, Small T: Biomarkers supporting mercury toxicity as the major exacerbator of neurological illness, recent evidence via the urine prophyrin tests. Medical Veritas 2006, 3:1-14. OpenURL
  110. Kehe K, Reichl FX, Durner J, Walther U, Hickel R, Forth W: Cytotoxicity of dental composite components and mercury compounds in pulmonary cells. Biomaterials 2001, 22:317-322. PubMed Abstract | Publisher Full Text OpenURL
  111. Reichl FX, Walther UI, Durner J, Kehe K, Hickel R, Kunzelmann KH, Spahl W, Hume WR, Benschop H, Forth W: Cytotoxicity of dental composite components and mercury compounds in lung cells. Dent Mater 2001, 17:95-101. PubMed Abstract | Publisher Full Text OpenURL
  112. Reichl FX, Simon S, Esters M, Seiss M, Kehe K, Kleinsasser N, Hickel R: Cytotoxicity of dental composite (co)monomers and the amalgam component Hg(2+) in human gingival fibroblasts. Arch Toxicol 2006, 80:465-472. PubMed Abstract | Publisher Full Text OpenURL
  113. Reichl FX, Esters M, Simon S, Seiss M, Kehe K, Kleinsasser N, Folwaczny M, Glas J, Hickel R: Cell death effects of resin-based dental material compounds and mercurials in human gingival fibroblast. Arch Toxicol 2006, 80:370-377. PubMed Abstract | Publisher Full Text OpenURL
  114. Walther UI, Walther SC, Liebl B, Kehe K, Hickel R, Kunzelmann KH, Spahl W, Hume WR, Benschop H, Forth W: Cytotoxicity of ingredients of various dental materials and related compounds in L2- and A549 cells. J Biomed Mater Res 2002, 63:643-649. PubMed Abstract | Publisher Full Text OpenURL
  115. Di Pietro A, Visalli G, La Maestra S: Biomonitoring of DNA damage in peripheral blood lymphocytes of subjects with dental restorative fillings. Mutat Res 2008, 650:115-122. PubMed Abstract | Publisher Full Text OpenURL
  116. Schmid K, Sassen A, Staudenmaier R: Mercury dichloride induces DNA-damage in human salivary gland tissue calls and lymphocytes. Arch Toxicol 2007, 1:759-767. Publisher Full Text OpenURL
  117. Akiyama M, Oshima H, Nakamura M: Genotoxicity of mercury used in chromosome aberration tests. Toxicol in Vitro 2001, 15:463-467. PubMed Abstract | Publisher Full Text OpenURL
  118. Pizzichini M, Fonzi M, Sugherini L, Fonzi L, Gasparoni A, Comporti M, Pompella A: Release of mercury from dental amalgam and its influence on salivary antioxidant activity. Bull Group Int Rech Sci Stomatol Odontol 2000, 42:94-100. PubMed Abstract OpenURL
  119. Pizzichini M, Fonzi M, Sugherini L, Fonzi L, Comporti M, Gasparoni A, Pompella A: Release of mercury from dental amalgam and its influence on salivary antioxidant activity. Sci Total Environ 2002, 284:19-25. PubMed Abstract | Publisher Full Text OpenURL
  120. Pizzichini M, Fonzi M, Gasparoni A, Fonzi L, Comporti M, Gasparoni A, Pompella A: Influence of amalgam fillings on Hg levels and total antioxidant activity in plasma of healthy donors. Bull Group Int Rech Sci Stomatol Odontol 2001, 43:62-67. PubMed Abstract OpenURL
  121. Pizzichini M, Fonzi M, Giannerini F, Mencarelli M, Gasparoni A, Rocchi G, Kaitsas V, Fonzi L: Influence of amalgam fillings on Hg levels and total antioxidant activity in plasma of healthy donors. Sci Total Environ 2003, 301:43-50. PubMed Abstract | Publisher Full Text OpenURL
  122. Ionescu JG, Novotny J, Stejskal V, Lätsch A, Blaurock-Busch E, Eisenmann-Klein M: Increased levels of transition metals in breast cancer tissue. Neuro Endocrinol Lett 2006, 27:36-39. PubMed Abstract OpenURL
  123. Drasch G, Mailänder S, Schlosser C, Roider G: Content of non-mercury-associated selenium in human tissues. Biol Trace Element Res 2000, 77:219-230. Publisher Full Text OpenURL
  124. Mutter J, Curth A, Naumann J, Deth R, Walach H: Does Inorganic Mercury Play a Role in Alzheimer’s Disease? A Systematic Review and an Integrated Molecular Mechanism. J Alzheimers Dis 2010, 22:357-374. PubMed Abstract | Publisher Full Text OpenURL
  125. Liebert CA, Wireman J, Smith T, Summers AO: The impact of mercury released from dental “silver” fillings on antibiotic resistances in the primate oral and intestinal bacterial flora. Met Ions Biol Syst 1997, 34:441-460. PubMed Abstract OpenURL
  126. Lorscheider FL, Vimy MJ, Summers AO, Zwiers H: The dental amalgam mercury controversy–inorganic mercury and the CNS; genetic linkage of mercury and antibiotic resistances in intestinal bacteria. Toxicology 1995, 97:19-22. PubMed Abstract | Publisher Full Text OpenURL
  127. Summers AO, Wireman J, Vimy MJ, Lorscheider FL, Marshall B, Levy SB: Mercury released from dental “silver” fillings provokes an increase in mercury- and antibiotic-resistant bacteria in oral and intestinal floras of primates. Antimicrob Agents Chemother 1993, 37:825-834. PubMed Abstract | PubMed Central Full Text OpenURL
  128. Davis IJ, Roberts AP, Ready D, Richards H, Wilson M, Mullany P: Linkage of a novel mercury resistance operon with streptomycin resistance on a conjugative plasmid in Enterococcus faecium. Plasmid 2005, 54:26-38. PubMed Abstract | Publisher Full Text OpenURL
  129. Skurnik D, Ruimy R, Ready D, Ruppe E, Bernède-Bauduin C, Djossou F, Guillemot D, Pier GB, Andremont A: Is exposure to mercury a driving force for the carriage of antibiotic resistance genes? J Med Microbiol 2010, 59:804-807. PubMed Abstract | Publisher Full Text OpenURL
  130. Leistevuo J, Jarvinen H, Osterblad M, Leistevuo T, Huovinen P, Tenovuo J: Resistance to mercury and antimicrobial agents in Streptococcus mutans isolates from human subjects in relation to exposure to dental amalgam fillings. Antimicrob Agents Chemother 2000, 44:456-457. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  131. Pike R, Lucas V, Stapleton P, Gilthorpe MS, Roberts G, Rowbury R, Richards H, Mullany P, Wilson M: Prevalence and antibiotic resistance profile of mercury-resistant oral bacteria from children with and without mercury amalgam fillings. J Antimicrob Chemother 2002, 49:777-783. PubMed Abstract | Publisher Full Text OpenURL
  132. Wireman J, Liebert CA, Smith T, Summers AO: Association of mercury resistance with antibiotic resistance in the gram-negative fecal bacteria of primates. Appl Environ Microbiol 1997, 63:4494-4503. PubMed Abstract | PubMed Central Full Text OpenURL
  133. Harris HH, Vogt S, Eastgate H, Legnini DG, Hornberger B, Cai Z, Lai B, Lay PA: Migration of mercury from dental amalgam through human teeth. J Synchrotron Radiat 2008, 15:123-128. PubMed Abstract | Publisher Full Text OpenURL
  134. Weidinger S, Kramer U, Dunemann L, Mohrenschlager M, Ring J, Behrendt H: Body burden of mercury is associated with acute atopic eczema and total IgE in children from southern Germany. J Allergy Clin Immunol 2004, 114:457-459. PubMed Abstract | Publisher Full Text OpenURL
  135. Berlin M: Mercury in dental-filling materials – an updated risk analysis in environmental medical terms. In The Dental Material Comission – Care and Consideration. Sweden; 2003. OpenURL
  136. Dunsche A, Frank M, Luttges J, Açil Y, Brasch J, Christophers E, Springer IN: Lichenoid reactions of murine mucosa associated with amalgam. Br J Dermatol 2003, 148:741-748. PubMed Abstract | Publisher Full Text OpenURL
  137. Dunsche A, Kastel I, Terheyden H, Springer I, Christophers E, Brasch J: Oral lichenoid reactions associated with amalgam: improvement after amalgam removal. Br J Dermatol 2003, 148:70-76. PubMed Abstract | Publisher Full Text OpenURL
  138. Martin M, Broughton S, Drangsholt M: Oral lichen planus and dental materials: a case-control study. Contact Dermatitis 2003, 48:331-336. PubMed Abstract | Publisher Full Text OpenURL
  139. Wong L, Freeman S: Oral lichenid lesions (OLL) and mercury in amalgam fillings. Contact Dermatitis 2003, 48:74-79. PubMed Abstract | Publisher Full Text OpenURL
  140. Guttman-Yassky E, Weltfriend S, Bergman R: Resolution of orofacial granulomatosis with amalgam removal. J Eur Acad Dermatol Venerol 2003, 17:344-347. Publisher Full Text OpenURL
  141. Guarneri F, Marini H: Perioral dermatitis after dental filling in a 12-year-old girl: involvement of cholinergic system in skin neuroinflammation? ScientificWorldJournal 2008, 8:157-163. PubMed Abstract | Publisher Full Text OpenURL
  142. Pigatto PD, Brambilla L, Guzzi G: Mercury pink exanthem after dental amalgam placement. J Eur Acad Dermatol Venereol 2008, 22:377-378. PubMed Abstract | Publisher Full Text OpenURL
  143. Bartova J, Prochazkova J, Kratka Z, Benetkova K, Venclikova Z, Sterzl I: Dental amalgam as one of the risk factors in autoimmune diseases. Neuro Endocrinol Lett 2003, 24:65-67. PubMed Abstract OpenURL
  144. Hultman P, Johansson U, Turley S, Lindh U, Enestrom S, Pollard K: Adverse immunological effects and autoimmunity induced by dental amalgam and alloy in mice. FASEB Journal 1994, 8:1183-1190. PubMed Abstract | Publisher Full Text OpenURL
  145. Hultman P, Lindh U, Horsted-Binslev P: Activation of the immune system and systemic immune-complex deposits in Brown Norway rats with dental amalgam restorations. J Dent Res 1998, 77:1415-1425. PubMed Abstract | Publisher Full Text OpenURL
  146. Pollard KM, Pearson DL, Hultman P, Deane TN, Lindh U, Kono DH: Xenobiotic acceleration of idiopathic systemic autoimmunity in lupus-prone bxbs mice. Environ Health Persp 2001, 109:27-33. Publisher Full Text OpenURL
  147. Prochazkova J, Sterzl I, Kucerova H, Bartova J, Stejskal VDM: The beneficial effect of amalgam replacement on health in patients with autoimmunity. Neuro Endocrinol Lett 2004, 25:211-218. PubMed Abstract OpenURL
  148. Stejskal J, Stejskal VD: The role of metals in autoimmunity and the link to neuroendocrinology. Neuro Endocrinol Lett 1999, 20:351-364. PubMed Abstract OpenURL
  149. Stejskal VD, Danersund A, Lindvall A: Metal-specific lymphocytes: biomarkers of sensitivity in man. Neuro Endocrinol Lett 1999, 20:289-298. PubMed Abstract OpenURL
  150. Sterzl I, Procházková J, Hrdá P, Bártová J, Matucha P, Stejskal VDM: Mercury and nickel allergy: risk factors in fatigue and autoimmunity. Neuro Endocrinol Lett 1999, 20:221-228. PubMed Abstract OpenURL
  151. Via CS, Nguyen P, Niculescu F, Papadimitriou J, Hoover D, Silbergeld EK: Low-dose exposure to inorganic mercury accelerates disease and mortality in acquired murine lupus. Environ Health Perspect 2003, 111:1273-1277. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  152. Sterzl I, Procházková J, Hrda P, Matucha P, Bartova J, Stejskal V: Removal of dental amalgam decreases anto-TPO and anti-Tg autoantibodies in patients with autoimmune thyroiditis. Neuro Endocrinol Lett 2006, 5(27(Suppl 1):25-30. OpenURL
  153. Kazantzis G: Mercury exposure and early effects: an overview. Med Lav 2002, 93:139-147. PubMed Abstract OpenURL
  154. Rampersad GC, Suck G, Sakac D, Fahim S, Foo A, Denomme GA, Langler RF, Branch DR: Chemical compounds that target thiol-disulfide groups on mononuclear phagocytes inhibit immune mediated phagocytosis of red blood cells. Transfusion 2005, 45:384-393. PubMed Abstract | Publisher Full Text OpenURL
  155. Bartram F, Donate HP, Müller KE, Bückendorf CH, Ohnsorge P, Huber W, von Baehr V: Significance of the patch test and the lymphocyte transformation test in the diagnostic of type IV-sensitazion. J Lab Med 2006, 30:101-106. OpenURL
  156. Venclíková Z, Benada O, Bártová J, Joska L, Mrklas L, Procházková J, Stejskal V, Podzimek S: In vivo effects of dental casting alloys. Neuro Endocrinol Lett 2006, 27(Suppl 1):61-68. OpenURL
  157. Valentine-Thon E, Schiwara HW: Validity of MELISA for metal sensitivity testing. Neuro Endocrinol Lett 2003, 24:50-55. PubMed Abstract OpenURL
  158. Valentine-Thon E, Sandkamo M, Müller K, Guzzi G, Hartmann T: Metallsensibilisierung: Nachweis, Validierung und Verlaufskontrolle mittels Lymphozyten-Transformations-Test (LTT-Melisa®). Zs f Orthomol Med 2005, 1:12-15. OpenURL
  159. Valentine-Thon E, Muller KE, Guzzi G, Kreisel S, Ohnsorge P, Sandkamp M: LTT-MELISA® is clinically relevant for detecting and monitoring metal sensitivity. Neuro Endocrinol Lett 2006, 27(Suppl1):17-24. PubMed Abstract OpenURL
  160. Yaqob A, Danersund A, Stejskal VD, Lindvall A, Hudecek R, Lindh U: Metal-specific lymphocyte reactivity is downregulated after dental metal replacement. Neuro Endocrinol Lett 2006, 27:189-197. PubMed Abstract OpenURL
  161. Lindh U, Hudecek R, Dandersund A, Eriksson S, Lindvall A: Removal of dental amalgam and other metal alloys supported by antioxidant therapy alleviates symptoms and improves quality of life in patients with amalgam-associated ill health. Neuro Endocrinol Lett 2002, 23:459-482. PubMed Abstract OpenURL
  162. Stejskal VD: Diagnosis and treatment of metal-induced side effects. Neuro Endocrinol Lett 2006, 27(Suppl 1):7-16. OpenURL
  163. Wortberg W: Intrauterine Fruchtschädigung durch Schwermetallbelastung der Mutter. Umwelt Medizin Gesellschaft 2006, 19:274-280. OpenURL
  164. Houston MC: The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern Ther Health Med 2007, 13:128-133,. OpenURL
  165. Frustaci A, Magnavita N, Chimenti C, Cladarulo M, Sabbioni E, Pietra R: Marked elevation of myocardial trace elements in idiopathic dilated cardiomyopathy compared with secondary cardiac dysfunction. J Am Coll Cardiol 1999, 33:1578-1583. PubMed Abstract | Publisher Full Text OpenURL
  166. Dodes JE: The amalgam controversy. An evidence-based analysis. J Am Dent Assoc 2001, 132:348-356. PubMed Abstract | Publisher Full Text OpenURL
  167. Boyd ND, Benediktsson H, Vimy MJ, Hooper DE, Lorscheider FL: Mercury from dental “silver” tooth fillings impairs sheep kidney function. Am J Physiol 1991, 261:1010-1014. OpenURL
  168. Trachtenberg F, Barregård L: The effect of age, sex, and race on urinary markers of kidney damage in children. Am J Kidney Dis 2007, 50:938-945. PubMed Abstract | Publisher Full Text OpenURL
  169. Mutter J, Naumann J, Sadaghiani C, Walach H: Quecksilber und die Alzheimer-Erkrankung. Fortschr Neuro Psychiat 2007, 75:528-538. Publisher Full Text OpenURL
  170. Mutter J, Naumann J, Guethlin C: Comments on the article “the toxicology of mercury and its chemical compounds” by Clarkson and Magos (2006). Crit Rev Toxicol 2007, 37:537-549. PubMed Abstract | Publisher Full Text OpenURL
  171. Carpenter DO: Effects of metals on the nervous system of humans and animals. Int J Occup Med Environ Health 2001, 14:209-218. PubMed Abstract OpenURL
  172. Dantzig PI: Parkinson’s disease, macular degeneration and cutaneous signs of mercury toxicity. J Occup Environ Med 2006, 48:656. PubMed Abstract | Publisher Full Text OpenURL
  173. Finkelstein Y, Vardi J, Kesten MM, Hod I: The enigma of parkinsonism in chronic borderline mercury intoxication, resolved by challenge with penicillamine. Neurotoxicology 1996, 17:291-295. PubMed Abstract OpenURL
  174. Gorell JM, Rybicki BA, Johnson C, Peterson EL: Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology 1999, 18:303-308. PubMed Abstract | Publisher Full Text OpenURL
  175. Miller K, Ochudto S, Opala G, Smolicha W, Siuda J: Parkinsonism in chronic occupational metallic mercury intoxication. Neurol Neurochir Pol 2003, 37:31-38. PubMed Abstract OpenURL
  176. Ngim CH, Devathasan G: Epidemiologic study on the association between body burden mercury level and idiopathic Parkinson’s disease. Neuroepidemiology 1989, 8:128-141. PubMed Abstract | Publisher Full Text OpenURL
  177. Ohlson CG, Hogstedt C: Parkinson’s disease and occupational exposure to organic solvents, agricultural chemicals and mercury – a case-referent study. Scand J Work Environ Health 1981, 7:252-256. PubMed Abstract OpenURL
  178. Rybicki BA, Johnson CC, Uman J, Gorell JM: Parkinson’s disease mortality and the industrial use of heavy metals in Michigan. Mov Disord 1993, 8:87-92. PubMed Abstract | Publisher Full Text OpenURL
  179. Seidler A, Hellenbrand W, Robra BP: Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: a case-control study in Germany. Neurology 1996, 46:1275-84. PubMed Abstract OpenURL
  180. Uversky VN, Li J, Fink AL: Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 2001, 276:44284-44296. PubMed Abstract | Publisher Full Text OpenURL
  181. Harakeh S, Sabra N, Kassak K, Doughan B, Sukhn C: Mercury and arsenic levels among Lebanese dentists: a call for action. Bull Environ Contam Toxicol 2003, 70:629-635. PubMed Abstract | Publisher Full Text OpenURL
  182. Tezel H, Ertas OS, Ozata F, Erakin C, Kayali A: Blood mercury levels of dental students and dentists at a dental school. Br Dent J 2001, 191:449-452. PubMed Abstract | Publisher Full Text OpenURL
  183. Aydin N, Karaoglanoglu S, Yigit A, Keles MS, Kirpinar I, Seven N: Neuropsychological effects of low mercury exposure in dental staff in Erzurum, Turkey. Int Dent J 2003, 53:85-91. PubMed Abstract OpenURL
  184. Bittner ACJ, Echeverria D, Woods JS: Behavioral effects of low-level exposure to HgO among dental professional: a cross-study evaluation of psychomotor effects. Neuortoxicol Teratol 1998, 17:161-168. OpenURL
  185. Echeverria D, Heyer NJ, Martin MD, Naleway C, Woods JS, Bittner ACJ: Behavioral effects of low-level exposure to elemental Hg among dentists. Neurotoxicol Teratol 1995, 17:161-168. PubMed Abstract | Publisher Full Text OpenURL
  186. Echeverria D, Woods JS, Heyer N, Rohlman DS, Farin FM, Bittner AC Jr, Li T, Garabedian C: Chronic low-level mercury exposure, BDNF polymorphism and associations with cognitive and motor function. Neurotoxicol Teratol 2005, 27:781-796. PubMed Abstract | Publisher Full Text OpenURL
  187. Heyer NJ, Echeverria D, Bittner AJ, Farin FM, Garabedian CC, Woods JS: Chronic low-level mercury exposure, BDNF polymorphism, and associations with self-reported symptoms and mood. Toxicol Sci 2004, 81:354-363. PubMed Abstract | Publisher Full Text OpenURL
  188. Heyer NJ, Bittner AJ, Echerverria D, Woods J: A cascade analysis of the interaction of mercury and coproporphyrinogen-oxidase (CPOX) polymorphism on the heme biosynthetic pathway and porphyrin production. Toxicol Lett 2006, 161:159-166. PubMed Abstract | Publisher Full Text OpenURL
  189. Gonzalez-Ramirez D, Maiorino RM, Zuniga-Charles M: Sodium 2,3-dimercaptopropane-1-sulfonate challenge test for mercury in humans: II. Urinary mercury, porphyrins and neurobehavioral changes of dental workers in Monterrey, Mexico. J Pharmacol Exp Ther 1995, 272:264-274. PubMed Abstract | Publisher Full Text OpenURL
  190. Langworth S, Sallsten G, Barregard L, Cynkier I, Lind ML, Soderman E: Exposure to mercury vapor and impact on health in the dental profession in Sweden. J Dent Res 1997, 76:1397-1404. PubMed Abstract | Publisher Full Text OpenURL
  191. Moen BE, Hollund BE, Riise T: Neurological symptoms among dental assistants: a cross-sectional study. J Occup Med Toxicol 2008, 18:3-10. OpenURL
  192. Ngim CH, Foo SC, Boey KW, Jeyaratnam J: Chronic neurobehavioral effects of elemental mercury in dentists. Br J Ind Med 1992, M49:782-790. OpenURL
  193. Ritchie KA, Macdonald EB, Hammersley R, O’Neil JM, McGowan DA, Dale IM, Wesnes K: A pilot study of the effect of low level exposure to mercury on the health of dental surgeons. J Occup Environ Med 1995, 52:813-817. Publisher Full Text OpenURL
  194. Ritchie KA, Gilmour WH, Macdonald EB, Burke FJ, McGowan DA, Dale IM, Hammersley R, Hamilton RM, Binnie V, Collington D: Health and neuropsychological functioning of dentists exposed to mercury. J Occup Environ Med 2002, 59:287-293. Publisher Full Text OpenURL
  195. Uzzell BP, Oler J: Chronic low-level mercury exposure and neuropsychological functioning. J Clin Exp Neuropsychol 1986, 8:581-593. PubMed Abstract | Publisher Full Text OpenURL
  196. Urban P, Lukas E, Nerudova J, Cabelkova Z, Cikrt M: Neurological and electrophysiological examinations on three groups of workers with different levels of exposure to mercury vapors. Eur J Neurol 1999, 6:571-577. PubMed Abstract | Publisher Full Text OpenURL
  197. Nadorfy-Lopez E, Torres SH, Finol H, Mendez M, Bello B: Skeletal muscle abnormalities associated with occupational exposure to mercury vapors. Hist Histopath 2000, 15:673-682. OpenURL
  198. Rowland A, Baird D, Weinberg C, Shore D, Shy C, Wilcox A: The effect of occupational exposure to the mercury vapour on the fertility of female dental assistants. Occup Environ Med 1994, 51:28-34. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  199. Lindbohm ML, Ylöstalo P, Sallmen M: Occupational exposure in dentistry and miscarriage. Occup Environ Med 2007, 64:127-133. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  200. Jones L, Bunnell J, Stillman J: A 30-year follow-up of residual effects on New Zealand School Dental Nurses, from occupational mercury exposure. Hum Exp Toxicol 2007, 26:367-374. PubMed Abstract | Publisher Full Text OpenURL
  201. Echeverria D, Woods JS, Heyer NJ, Rohlman D, Farin FM, Li T, Garabedian CE: The association between a genetic polymorphism of coproporphyrinogen oxidase, dental mercury exposure and neurobehavioral response in humans. Neurotoxicol Teratol 2006, 28:39-48. PubMed Abstract | Publisher Full Text OpenURL
  202. Gerhard I, Monga B, Waldbrenner A, Runnebaum B: Heavy metals and fertility. J Toxicol Environ Health. 1998, 54:593-611. PubMed Abstract OpenURL
  203. Gerhard I, Waibel S, Daniel V, Runnebaum B: Impact of heavy metals on hormonal and immunological factors in women with repeated miscarriages. Hum Reprod Update 1998, 4:301-309. PubMed Abstract | Publisher Full Text OpenURL
  204. Gerhard I, Runnebaum B: The limits of hormone substitution in pollutant exposure and fertility disorders. Zentralbl Gynaekol 1992, 114:593-602. OpenURL
  205. Sheiner EK, Sheiner E, Hammel RD, Potashnik G, Carel R: Effect of occupational exposures on male fertility: literature review. Ind Health 2003, 41:5:5-62. OpenURL
  206. Podzimek S, Prochazkova J, Pribylova L, Bártová J, Ulcová-Gallová Z, Mrklas L, Stejskal VD: Effect of heavy metals on immune reactions in patients with infertility. Cas Lek Cesk 2003, 142:285-288. PubMed Abstract OpenURL
  207. Podzimek S, Prochazkova J, Bultasova L, Bartova J, Ulcova-Gallova Z, Mrklas L, Stejskal VD: Sensitization to inorganic mercury could be a risk factor for infertility. Neuro Endocrinol Lett 2005, 26:277-282. PubMed Abstract OpenURL
  208. Ahlrot-Westerlund B: Mercury in cerebrospinal fluid in multiple sclerosis. Swed J Biol Med 1989, 1:6-7. OpenURL
  209. Craelius W: Comperative epidemiology of multiple sclerosis and dental caries. J Epidemiol Comm Health 1978, 32:155-165. Publisher Full Text OpenURL
  210. McGrother C, Dugmore C, Phillips M, Raymond N, Garrick P, Baird W: Multiple sclerosis, dental caries and fillings: a case-control study. Br Dent J 1999, 187:261-264. PubMed Abstract | Publisher Full Text OpenURL
  211. Baasch E: Theoretical considerations on the etiology of multiple sclerosis. Is multiple sclerosis a mercury allergy? Schweiz Arch Neurol Neurochir Psychiatr 1966, 98:1-19. PubMed Abstract OpenURL
  212. Ingalls T: Epidemiology, etiology and prevention of multiple sclerosis. Hypothesis and fact. Am J Forensic Med Pathol 1983, 4:55-61. PubMed Abstract | Publisher Full Text OpenURL
  213. Ingalls T: Endemic clustering of multiple sclerosis in time and place, 1934-1984. Confirmation of a hypothesis. Am J Forensic Med Pathol 1986, 7:3-8. PubMed Abstract | Publisher Full Text OpenURL
  214. Issa Y, Watts D, Duxbury A, Brunton P, Watson M, Waters C: Mercuric chloride: toxicity and apoptosis in a human oligodendroglial cell line. Biomaterials 2003, 24:981-987. PubMed Abstract | Publisher Full Text OpenURL
  215. Siblerud RL: A comparison of mental health of multiple sclerosis patients with silver/mercury dental fillings and those with fillings removed. Psychol Rep 1992, 70:1139-1151. PubMed Abstract | Publisher Full Text OpenURL
  216. Siblerud RL, Kienholz E, Motl J: Evidence that mercury from silver dental fillings may be an etiological factor in smoking. Toxicol Lett 1993, 68:307-310. PubMed Abstract | Publisher Full Text OpenURL
  217. Huggins HA, Levy TE: Cerebrospinal fluid protein changes in multiple sclerosis after dental amalgam removal. Altern Med Rev 1998, 4:295-300. OpenURL
  218. Bates M, Fawcett J, Garrett N, Cutress T, Kjellstrom T: Related articles, health effects of dental amalgam exposure: a retrospective cohort study. Int J Epidemiol 2004, 33:894-902. PubMed Abstract | Publisher Full Text OpenURL
  219. Bates MN: Mercury amalgam dental fillings: an epidemiologic assessment. Int J Hyg Environ Health 2006, 209(Suppl 4):309-316. PubMed Abstract | Publisher Full Text OpenURL
  220. Aminzadeh KK, Etminan M: Dental amalgam and multiple sclerosis: a systematic review and meta-analysis. J Public Health Dent 2007, 67:64-66. PubMed Abstract | Publisher Full Text OpenURL
  221. Pamphlett R, Coote P: Entry of low doses of mercury vapor into the nervous system. Neurotoxicology 1998, 19:39-47. PubMed Abstract OpenURL
  222. Pamphlett R, Slater M, Thomas S: Oxidative damage to nuclic acids in motor neurons containing mercury. J Neurol Sci 1998, 159:121-126. PubMed Abstract | Publisher Full Text OpenURL
  223. Pamphlett R, Waley P: Motor neuron uptake of low dose inorganic mercury. J Neurol Sci 1996, 135:63-67. PubMed Abstract | Publisher Full Text OpenURL
  224. Praline J, Guennoc AM, Limousin N, Hallak H, deToffol B, Corcia P: ALS and mercury intoxication: a relationship? Clin Neurol Neurosurg 2007, 109(Suppl 10):880-883. PubMed Abstract | Publisher Full Text OpenURL
  225. Stankovic R: Atrophy of large myelinated motor axons and declining muscle grip strength following mercury vapour inhalation in mice. Inhal Toxicol 2006, 18:57-69. PubMed Abstract | Publisher Full Text OpenURL
  226. Albrecht J, Matya E: Glutamate: a potential mediator of inorganic mercury neurotoxicity. Metab Brain Dis 1996, 11:175-184. PubMed Abstract | Publisher Full Text OpenURL
  227. Adams C, Ziegler D, Lin J: Mercury intoxication simulating amyotrophic lateral sclerosis. JAMA 1983, 250:642-643. PubMed Abstract | Publisher Full Text OpenURL
  228. Schwarz S, Husstedt I, Bertram H, Kuchelmeister K: Amyotrophic lateral sclerosis after accidental injection of mercury. J Neurol Neurosurg Psychiatry 1996, 60:698. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  229. Redhe O, Pleva J: Recovery from amyotrophic lateral sclerosis and from allergy after removal of dental amalgam fillings. Int J Risk Saf Med 1994, 4:229-236. OpenURL
  230. Engel P: Beobachtungen über die Gesundheit vor und nach Amalgamentfernung. [Observations on health before and after removing dental amalgam]. Schweiz Monatsschr Zahnm 1998, 108:2-14. OpenURL
  231. Godfrey ME, Wojcik DP, Krone CA: Apolipoprotein E genotyping as a potential biomarker for mercury neurotoxicity. J Alz Dis 2003, 5:189-195. OpenURL
  232. Siblerud RL: The relationship between mercury from dental amalgam and mental health. Am J Psychother 1989, 43:575-587. PubMed Abstract OpenURL
  233. Siblerud RL, Motl J, Kienholz E: Psychometric evidence that mercury from silver dental fillings may be an etiological factor in depression, excessive anger, and anxiety. Psychol Rep 1994, 74:67-80. PubMed Abstract OpenURL
  234. Wojcik DP, Godfrey ME, Haley B: Mercury toxicity presenting as chronic fatigue, memory impairment and depression: diagnosis, treatment, susceptibility, and outcomes in a New Zealand general practice setting (1994-2006). Neuro Endocrinol Lett 2006, 27:415-423. PubMed Abstract OpenURL
  235. Marcusson J: Psychological and somatic subjective as a result of dermatological patch testing with metallic mercury and phenyl mercuric acetate. Toxicol Lett 1996, 84:113-122. PubMed Abstract | Publisher Full Text OpenURL
  236. Marcusson J, Jarstrand C: Oxidative metabolism of neutrophils in vitro and human mercury intolerance. Toxicol in Vitro 1998, 12:383-388. PubMed Abstract | Publisher Full Text OpenURL
  237. Marcusson J: The frequency of mercury intolerance in patients with chronic fatigue syndrome and healthy controls. Contact Dermatitis 1999, 41:60-61. PubMed Abstract | Publisher Full Text OpenURL
  238. Woods J Martin, Naleway CA, Echeverria D: Urinary porphyrin profiles as a biomarker of mercury exposure: studies on dentists with occupational exposure to mercury vapor. J Toxicol Environ Health 1993, 40:235-46. PubMed Abstract | Publisher Full Text OpenURL
  239. Nataf R, Skorupka C, Amet L, Lam A, Springbett A, Lathe R: Porphyrinuria in childhood autistic disorder: implications for environmental toxicity. Toxicol Appl Pharmacol 2006, 214:99-108. PubMed Abstract | Publisher Full Text OpenURL
  240. Geier DA, Geier MR: A prospective assessment of porphyrins in autistic disorders: a potential marker for heavy metal exposure. Neurotox Res 2006, 10:57-64. PubMed Abstract | Publisher Full Text OpenURL
  241. Geier DA, Geier MR: A meta-analysis epidemiological assessment of neurodevelopmental disorders following vaccines administered from 1994 through 2000 in the United States. Neuro Endocrinol Lett 2006, 27:401-413. PubMed Abstract OpenURL
  242. Woods JS, Echeverria D, Heyer NJ, Simmonds PL, Wilkerson J, Farin FM: The association between genetic polymorphisms of coproporphyrinogen oxidase and an atypical porphyrinogenic response to mercury exposure in humans. Toxicol Appl Pharmacol 2005, 206:113-120. PubMed Abstract | Publisher Full Text OpenURL
  243. Atamna H, Frey WH: A Role for heme in Alzheimer’s disease: Heme binds amyolid β and has altered metabolism. PNAS 2004, 101(Suppl 30):153-158. PubMed Abstract | PubMed Central Full Text OpenURL
  244. Stewart WF, Schwartz BS, Simon D, Kelsey K, Todd AC: ApoE genotype, past adult lead exposure, and neurobehavioral function. Environ Health Perspect 2002, 110:501-505. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  245. Mutter J, Naumann J, Schneider R, Walach H, Haley B: Mercury an autism: Accelerating evidence? Neuro Endocrinol Lett 2005, 26:431-437. OpenURL
  246. Mutter J, Naumann J, Walach H, Daschner F: Amalgam: Eine Risikobewertung unter Berücksichtigung der neuen Literatur bis 2005. Gesundheitswesen 2005, 67:204-216. PubMed Abstract | Publisher Full Text OpenURL
  247. Mutter J, Naumann J, Sadaghiani C, Walach H, Drasch G: Mercury an autism: Response to the letter of K.E.v. Muehlendahl. Int J Hyg Environ Health 2005, 208:437-438. Publisher Full Text OpenURL
  248. Kidd R: Results of dental amalgam removal and mercury detoxification using DMPS and neural therapy. Altern Ther Health 2000, 6:49-55. OpenURL
  249. Lindforss H, Marqvardsen O, Olsson S, Henningson M: Effekter på hälsan efter avlägsnandet av amalgamfyllingar. Enodontologisk, medicinsk och psykosomatisk studie. Tandläkartidningen 1994, 86:205-211. OpenURL
  250. Lygre GB, Gjerdet NR, Bjorkman L: Patients’ choice of dental treatment following examination at a specialty unit for adverse reactions to dental materials. Acta Odontol Scand 2004, 62:258-263. PubMed Abstract | Publisher Full Text OpenURL
  251. Stomberg R, Langworth S: Mercury in dental-filling materials – an updated risk analysis in environmental medical terms. The dental Material Commission – Care and Consideration. In Edited by Berlin M. Sweden. 2003, 19.(1998):
  252. Faustman EM, Silbernagel SM, Fenske RA, Burbacher T, Ponce RA: Mechanisms underlying children’s susceptibility to environmental toxicants. Environ Health Perspect 2000, 108:13-21. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  253. Cheuk DK, Wong V: Attention-deficit hyperactivity disorder and blood mercury level: a case control study in Chinese children. Neuropediatrics 2006, 37:234-240. PubMed Abstract | Publisher Full Text OpenURL
  254. Desoto MC, Hitlan RT: Blood levels of mercury are related to diagnosis of autism: a reanalysis of an important data set. J Child Neurol 2007, 22:1308-1311. PubMed Abstract | Publisher Full Text OpenURL
  255. Adams JB, Romdalvik J, Ramanujam VM, Legator MS: Mercury, lead, and zinc in baby teeth of children with autism versus controls. J Toxicol Environ Health 2007, 70:1046-1051. Publisher Full Text OpenURL
  256. Evans TA, Siedlak SL, Lu L: The autistic phenotype exhibits remarkably localized modification of brain protein by products of free radical-induced lipid oxidation. Am J Biochem Biotechnol 2008, 4:61-72. Publisher Full Text OpenURL
  257. Lopez-Hurtado E, Prieto JJ: A microscopic study of language-related cortex in autism. Am J Biochem Biotechnol 2008, 4:130-145. Publisher Full Text OpenURL
  258. Sajdel-Sulkowska EM, Lipinski B, Windom H, Audhya T, McGinnis W: Oxidative stress in autism: elevated cerebellar 3-nitrotyrosine levels. Am J Biochem Biotechnol 2008, 4:73-84. Publisher Full Text OpenURL
  259. Bradstreet J, Geier D, Kartzinel J, Adams J, Geier M: A case-control study of mercury burden in children with autistic spectrum disorders. J Am Phys Surg 2003, 8:76-79. OpenURL
  260. Geier DA, Geier MR: A case series of children with apparent mercury toxic encephalopathies manifesting with clinical symptoms of regressive autistic disorders. J Toxicol Environ Health 2007, 70:837-851. Publisher Full Text OpenURL
  261. Geier DA, Geier MR: A prospective study of mercury toxicity biomarkers in autistic spectrum disorders. J Toxicol Environ Health. 2007, 70:1723-1730. PubMed Abstract | Publisher Full Text OpenURL
  262. Adams JB, Baral M, Geis E, Mitchell J, Ingram J, Hensley A, Zappia I, Newmark S, Gehn E, Rubin RA, Mitchell K, Bradstreet J, El-Dahr J: Safety and efficacy of oral DMSA therapy for children with autism spectrum disorders: part B – behavioral results. BMC Clin Pharmacol 2009, 9:17. PubMed Abstract | BioMed Central Full Text | PubMed Central Full Text OpenURL
  263. Geier DA, Kern JK, Geier MR: A prospective study of prenatal mercury exposure from maternal dental amalgams and autism severity. Acta Neurobiol Exp 2009, 69:189-197. OpenURL
  264. Geier DA, Mumper E, Gladfelter B, Coleman L, Geier MR: Neurodevelopmental Disorders, Maternal Rh-Negativity, and Rho(D) Immune Globulins: A Multi-Center Assessment. Neuro Endocrinol Lett 2008, 29:272-280. PubMed Abstract OpenURL
  265. Hornig M, Chian D, Lipkin W: Neurotoxic effects of postnatal thimerosal are mouse strain dependent. Mol Psychiatry 2004, 9:833-845. PubMed Abstract | Publisher Full Text OpenURL
  266. Amin-Zaki L, Majeed MA, Greenwood MR, Elhassani SB, Clarkson TW, Doherty RA: Methylmercury poisoning in the Iraqi suckling infant: a longitudinal study over five years. J Appl Toxicol 1981, 1:210-214. PubMed Abstract | Publisher Full Text OpenURL
  267. Counter SA, Buchanan LH, Ortega F, Laurell G: Elevated blood mercury and neuro-otological observations in children of the Ecuadorian gold mines. J Toxicol Environ Health 2002, 65:149-163. Publisher Full Text OpenURL
  268. Debes F, Budtz-Jorgensen E, Weihe P, White RF, Grandjean P: Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol Teratol 2006, 28:363-75. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  269. Palmer R, Blanchard S, Stein Z, Mandell D, Miller C: Environmental mercury release, special education rates and autism disorder: an ecological study of Texas. Health&Place 2006, 12:203-209. OpenURL
  270. Rury J: Links between environmental mercury special education and autism in Louisiana. PhD thesis. Louisiana State University, Baton Rouge (LA); 2006. OpenURL
  271. Windham GC, Zhang L, Gunier R, Croen LA, Grether JK: Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco Bay area. Environ Health Perspect 2006, 114:1438-1444. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  272. James S, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA: Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 2004, 80:1611-1617. PubMed Abstract | Publisher Full Text OpenURL
  273. James SJ, Slikker W, Melnyk S, New E, Pogribna M, Jernigan S: Thimerosal neurotoxicity is associated with glutathione depletion: protection with glutathione precursors. Neurotoxicology 2005, 26:1-8. PubMed Abstract | Publisher Full Text OpenURL
  274. Autism Research Institute: Treatment options for mercury/metal toxicity in autism and related developmental disabilities. [http://autism.asu.edu/TreatmentOptions.pdf] webcite
  275. Zahir F, Rizwi SJ, Haq SK, Khan RH: Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 2005, 20:351-360. Publisher Full Text OpenURL
  276. Bjorkman L, Pedersen NL, Lichtenstein P: Physical and mental health related to dental amalgam fillings in Swedish twins. Community Dent Oral Epidemiol 1996, 24:260-267. PubMed Abstract | Publisher Full Text OpenURL
  277. Bellinger DC, Needleman HL: Intellectual impairment and blood lead levels. N Eng J Med 2003, 349:500-502. Publisher Full Text OpenURL
  278. DeRouen TA, Martin MD, Leroux BG: Neurobehavioral effects of dental amalgam in children: a randomized clinical trial. JAMA 2006, 295(Suppl 15):1784-1792. PubMed Abstract | Publisher Full Text OpenURL
  279. Buyske S, Williams TA, Mars AE, Stenroos ES, Ming SX, Wang R, Sreenath M, Factura MF, Reddy C, Lambert GH, Johnson WG: Analysis of case-parent trios at a locus with a deletion allele: association of GSTM1 with autism. BMC Genet 2006, 7:8. PubMed Abstract | BioMed Central Full Text | PubMed Central Full Text OpenURL
  280. Chew CL, Soh G, Lee AS, Yeoh TS: Long-term dissolution of mercury from a non-mercury-releasing amalgam. Clin Prev Dent 1991, 13(Suppl 3):5-7. PubMed Abstract OpenURL
  281. UNEP (United Nations Environment Programm Chemicals): Global Mercury Assessment 2002. [http://www.chem.unep.ch/mercury/Report/GMA-report-TOC.htm] webcite
  282. Laks DR: Assessment of chronic mercury exposure within the U.S. population, National Health and Nutrition Examination Survey, 1999-2006. Biometals2009.[Epub ahead of print]PubMed Abstract | Publisher Full Text OpenURL
  283. Hylander L, Goodsite M: Environmental costs of the mercury pollution. Sci Total Environ 2006, 368:352-370. PubMed Abstract | Publisher Full Text OpenURL
  284. Hylander L, Lindvall A, Gahnberg L: High mercury emissions from dental clinics despite amalgam separators. Sci Total Environ 2006, 362:74-84. PubMed Abstract | Publisher Full Text OpenURL
  285. Hylander L, Lindvall A, Uhrberg R, Gahnberg L, Lindh U: Mercury recovery in situ of four different dental amalgam separators. Sci Total Environ 2006, 366:320-336. PubMed Abstract | Publisher Full Text OpenURL
  286. Bender M: Taking a bite out of dental mercury pollution. New England zero Mercury Campaign. [http:/ / mpp.cclearn.org/ wp-content/ uploads/ 2008/ 08/ nezmc_report_card_on_dental_mercury final.pdf] webcite
  287. Bengtsson U: The symbiosis between the dental and industrial communities and their scientific journals. [http://www.gbg.bonet.se/bwf/art/symbiosis.html] webcite
  288. Consumer for Dental Choice: Complaint against FDA. [http://www.toxicteeth.org/natcamp_fedgovt_fda_complaint_Dec07.cfm] webcite2008.
  289. FDI World Dental Federation: FDI participates at WHO/UNEP meeting on future use of materials for dental restoration. [http:/ / www.fdiworldental.org/ content/ fdi-participates-whounep-meeting-fu ture-use-materials-dental-restorati on] webcite2009.
  290. Mercury Policy Project, Bender M: Letter to WHO: WHO meeting report on the future of dental restorative materials. [http:/ / mercurypolicy.org/ wp-content/ uploads/ 2010/ 12/ letter_to_who_amalgam_nov_2010_fina l_final.pdf] webcite2010.
  291. Gruning T, Gilmore AB, McKee M: Tobacco Industry Influence on Science and Scientists in Germany. Am J Public Health 2006, 96:20-32. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  292. Hardell L, Walker MJ, Walhjalt B, Friedman LS, Richter ED: Secret ties to industry and conflicting interests in cancer research. Am J Ind Med 2007, 50:227-233. PubMed Abstract | Publisher Full Text OpenURL
  293. Bohm SR, Dian Z, Gilman DS: Maximizing profit and endangering health: corporate strategies to avoid litigation and regulation. Int J Occup Environ Health 2005, 11:338-348. PubMed Abstract OpenURL
  294. Jacobson MF: Lifting the veil of secrecy from industry funding of nonprofit health organizations. Int J Occup Environ Health 2005, 11:349-55. PubMed Abstract OpenURL
  295. Egilman DS, Bohme SR: Over a barrel: corporate corruption of science and its effects on workers and the environment. Int J Occup Environ Health 2005, 11:331-337. PubMed Abstract OpenURL

Stres oksydacyjny w autyzmie

Stres oksydacyjny w autyzmie

Woody R. McGinnis, MD

Alternative Therapies, Nov/Dec 2004, vol. 10, no 6

 

Kiedy poziom oksydantów przekracza poziom obrony antyoksydacyjnej organizmu, różne układy dotyka stres oksydacyjny, powodujący zniszczenia cząsteczek i zaburzenia ich funkcjonowania. Autyzm to zaburzenie behawioralne, z deficytami w zakresie komunikacji i rozwoju społecznego. Istnieją teorie, iż stres oksydacyjny może odgrywać rolę w patofizjologii zachowań autystycznych (1). Inne poważne zaburzenie behawioralne, schizofrenia, charakteryzuje się wysokim poziomem markerów świadczących o stresie oksydacyjnym (2) i udokumentowana jest poprawa po użyciu antyoksydantów (3). Wiele leków neuroleptycznych stosowanych wobec schizofreników to tak naprawdę silne antyoksydanty (4).

Bezpośrednie dowody stresu oksydacyjnego w autyzmie


Znajdujące się w organizmie lipidy, proteiny, glikoproteiny i kwasy nukleinowe mogą być uszkodzone w procesie oksydacji i istnieje wiele metod wykorzystywanych w celu zmierzenia poziomu stresu oksydacyjnego w moczu, krwi, wydychanym powietrzu i próbkach tkanek. Lipidy, które są składnikami membran komórkowych, podlegają łatwej peroksydacji, w szczególności jeśli są wysoko nienasycone.

Bezpośrednie wskaźniki peroksydacji lipidów są wysokie przy autyzmie. W opublikowanych badaniach kwas tiobarbiturowy w czerwonych krwinkach (wskaźnik peroksydacji lipidów) był dwukrotnie podwyższony u dzieci z autyzmem w porównaniu do grupy kontrolnej (5). Inne badania wykazały, że poziom peroksydów lipidowych w osoczu (6) i izoprostanów w moczu (7) był znacznie wyższy u dzieci z autyzmem.

Niebezpośrednie wskaźniki również wskazują na wyższą peroksydację lipidów u dzieci z autyzmem. Niskie stężenia wysoko nienasyconych lipidów w membranach komórkowych czerwonych krwinek (8) sugerują zniszczenia oksydacyjne. Wyższy poziom fosfolipazy A2 (8) i utrata asymetrii membran (9) u dzieci z autyzmem odpowiadają efektom oksydacji.

Lipofuscyna to nie podlegająca degradacji matryca oksydowanych lipidów i połączonych z nimi protein, która formuje się w tkance jako efekt stresu oksydacyjnego. Powiązanie umiejscowienia lipofuscyn z obciążeniami organizmu może dać pewne wskazówki co do neuropatogenezy. W chorobie Alzheimera lipofuscyny są powiązane z oksydacją mitochondrialnego DNA (10). W udokumentowanym przypadku zatrucia rtęcią osoba, wykazująca symptomy psycho-organiczne, aż 17 lat po ekspozycji w mózgu ujawniono podwyższony poziom rtęci zlokalizowanej w lipofuscynie (11).

Lipofuscyny były eksperymentalnie indukowane poprzez podawanie silnych substancji oksydujących jak żelazo (12) czy kwas kainowy (13). U zwierząt lipofuscyny kształtowały się najpierw w hipokampie, a potem w korze mózgowej (14). W trakcie tych eksperymentów wykazano, że ilość lipofuscyn zmniejsza się poprzez suplementację witaminami C i E (15) oraz karnityną (16) a aktywność mózgu była odwrotnie proporcjonalna do zawartości lipofuscyn (17).

Edith Lopez-Hurtado i Jorge Prieto ujawnili znaczne Lipofuscyny w częściach kory mózgowej autystów odpowiedzialnej za język i komunikację, deficyty integralne z diagnozą autyzmu. Po osiągnięciu wieku 7 lat, w porównaniu do grupy kontrolnej, większe lipofuscyny zaobserwowano u autystów w obszarze Brodmanna – rozpoznawanie mowy (22), obszarze odpowiedzialnym za czytanie (39) i za wykorzystywanie języka (44). Zarówno u autystów, jak i u grupy kontrolnej, lipofuscyny były znaczniejsze w obszarze Brodmanna (44). Analiza warstw kory mózgowej wykazała, że ilość komórek zawierających lipofuscyny była większa w warstwach II i IV. Znaczny spadek ilości neuronów zaobserwowano w warstwach II i IV w korze mózgowej autystów (18). Większe lipofuscyny ujawniono również u osób z zespołem Retta (19).

Siatkówka, wirtualne przedłużenie mózgu, jest bardzo wrażliwa na stres oksydacyjny. Im większy jest ten stres, tym większą peroksydację lipidów w siatkówce zaobserwowano u modeli zwierzęcych (20). W autyzmie, odbiegające od normy retinogramy ze spłaszczonymi falami B (21-22) sugerują zniszczenie siatkówki wywołane przez oksydację. Reakcja siatkówki na antyoksydanty u autystów nie została przebadana.

Dane implikujące większą oksydację cząsteczek w autyzmie podsumowane są w tabeli 1.

Tabela 1. Cząsteczki podlegające oksydacji u dzieci z autyzmem w porównaniu do grup kontrolnych.

Wynik odbiegający od normy                                  Pozycja w bibliografii

kwas tiobarbiturowy w czerwonej krwince                          (5)

peroksydy lipidowe w osoczu                                                    (6)

izoprostany w moczu                                                                    (7)

lipofuscyny w korze mózgowej                                                (18)

retinogramy poza normą                                                           (21-22)

Niebezpośrednie dowody stresu oksydacyjnego w autyzmie

Niebezpośrednie dowody większego stresu oksydacyjnego w autyzmie to: 1) niski poziom enzymów przeciwutleniających i glutationu, 2) niższy poziom przeciwutleniających składników odżywczych, 3) wyższy poziom metali ciężkich i toksyn, 4) wyższa oksydaza ksantynowa  i poziom cytokin oraz 5) większa produkcja tlenku azotu, toksycznego wolnego rodnika.

Niższe poziomy enzymów przeciwutleniających i glutationu w autyzmie (tabela 2) mogą brać się ze zmniejszonej produkcji albo z nadmiernego wykorzystywania i powodują większą wrażliwość na oksydanty. Niższy poziom przeciwutleniających składników odżywczych (tabela 3) może brać się ze zmniejszonej podaży lub absorpcji i/lub większego zużycia w wyniku oksydacji. W literaturze naukowej udokumentowano zwiększoną oksydację cząsteczek w różnych stanach niedoboru składników odżywczych organizmu (29).

 

Tabela 2. Niższe poziomy enzymów przeciwutleniających i glutationu u dzieci z autyzmem w porównaniu do grup kontrolnych.

Wynik niższy u autystów                                         Pozycja w bibliografii

GSHPx w czerwonej krwince                                               (23-24)

GSHPx w osoczu                                                                       (24)

SOD w czerwonej krwince                                                    (24)

SOD w płytkach krwi                                                              (23)

Katalaza w czerwonej krwince                                             (5)

Całkowity glutation w osoczu                                             (25)

GSH/GSSG w osoczu                                                               (25)

Tabela 3. Niższy poziom przeciwutleniających składników odżywczych u dzieci z autyzmem w porównaniu do grup kontrolnych.

Składnik odżywczy                                                  Pozycja w bibliografii

Witaminy C, E i A w osoczu                                                      (26)

Poziom B6 (P5P) w czerwonej krwince                                (27)

Aktywność B6 (EGOT) w czerwonej krwince                     (26)

Poziom magnezu w czerwonej krwince                                (26)

Poziom selenu w czerwonej krwince                                    (26)

Poziom cynku w osoczu                                                            (28)

Poziom cynku w czerwonej krwince                                     (26)

Poziomy składników odżywczych odzwierciedlają status glutationu i enzymów przeciwutleniających. Dobrze znany jest efekt podawania witamin C i E na wzrost produkcji glutationu. Niedobór witaminy B6 jest powiązany z niższą peroksydazą glutationową (GSHPx) i reduktazą glutationową (30). Wszystkie formy GSHPx zawierają selen i istnieje silny związek między niskim poziomem selenu we krwi a aktywnością GSHPx (31).

Toksyny organiczne (33-40) i metale ciężkie (35) to silne utleniacze. Mogą kumulować się (tabela 4) z uwagi na upośledzoną detoksyfikację, z czym mamy do czynienia w autyzmie (41). Toksyny na różny sposób powodują utlenianie komórek. Toksyny organiczne i insektycydy stymulują syntazę tlenku azotu (NOS) (42). Miedź katalizuje produkcję wolnych rodników, szczególnie gdy nie wystarczający jest poziom katalazy (32). Rtęć zwiększa stres oksydacyjny blokując produkcję energii w mitochondriach i zmniejszając poziom glutationu.

Krążące cytokiny (40) i oksydaza ksantynowa (XO) (5) są podwyższone w autyzmie i obie powodują produkcję wolnych rodników. XO pochodzi z oksydacji dehydrogenazy ksantynowej. Cytokiny i XO to powód i skutek stresu oksydacyjnego.

Tabela 4. Wyższy poziom utleniaczy u dzieci z autyzmem w porównaniu do grup kontrolnych.

Parametr                                                       Pozycja w bibliografii

Perchloretylen w osoczu                                                        (26)

Rtęć, ołów i arszenik w czerwonej krwince                     (26)

Rtęć w moczu                                                                              (35)

Miedź w osoczu                                                                          (36)

Azotyny i azotany w osoczu                                                 (37-38)

Azotyny i azotany w czerwonej krwince                         (39)

Krążące cytokiny                                                                      (40)

Oksydaza ksantynowa w czerwonej krwince                (5)

Wyższa produkcja wolnych rodników w autyzmie


Tlenek azotu (NO), który jest krótkotrwałą substancją, jest mierzony jako całkowita ilość azotynów i azotanów, które są stabilnymi pochodnymi tlenku azotu. W autyzmie poziom azotynów i azotanów w czerwonej krwince (39) i osoczu (37, 38) jest podwyższony, a poziom ich w osoczu koreluje z kwasem tiobarbiturowym (30). Nadmierna produkcja NO odgrywa rolę w innych zaburzeniach neurobehawioralnych, np. schizofrenii (43), chorobie Alzheimera, zespole Downa (44) i stwardnieniu rozsianym (45).

Nie wiadomo, czy nadmierna produkcja NO w autyzmie jest umiejscowiona w konkretnych organach czy tkankach. Jakiekolwiek komórki produkujące cytokiny mogą stymulować NO. W autyzmie najbardziej prawdopodobnym jest, że ma to miejsce w mózgu i przewodzie pokarmowym, oba te układy w autyzmie zwykle nie są w normie, a dominują objawy behawioralne i gastrologiczne.

Nadmierne NO w mózgu to poważna sprawa, gdyż zwiększa apoptozę (46), uszkadza barierę krew-mózg (47), zwiększa neurodegenerację (48) i demielinację (49). Takie mechanizmy mogą mieć wpływ na rozwój w autyzmie.

Zmniejszona aktywność receptorów wrażliwych na oksydację ma miejsce w mózgach autystów i może mieć związek z poziomem NO albo ogólnie z większym stresem oksydacyjnym. Zmniejszona jest aktywność receptorów cholinergicznych (50), a są one podatne na działanie NO (51). Receptory kwasu gamma-aminobutyrowego (GABA), generalnie podatne na stres oksydacyjny (52) są zmniejszone w hipokampach autystów (53). Jest prawdopodobnym, że polimorfizm GABA, powiązany z autyzmem, może doprowadzić do zwiększenia podatności tych receptorów na stres oksydacyjny (54).

W aktualnej literaturze wskazano, że u autystów występuje mniej komórek Purkinjego w móżdżku, mniejsze neurony w korze mózgowej i ciele migdałowatym (55). We wszystkich badaniach podkreślano utratę komórek Purkinjego (56). W hipokampie stwierdza się większe zagęszczenie i splątanie dendrytów (57). Nie wyjaśniono tych wyników badań. Nowoczesna technologia pozwoli zbadać i zlokalizować konkretne oksydacyjne biomarkery w mózgach autystów, co doprowadzi do możliwych wyjaśnień tych patologii.

Tabela 5. Problemy przewodu pokarmowego w podgrupach dzieci z autyzmem

Pararmetr                                                                 Podgrupa        Pozycja w bibliografii

Wysoka przepuszczalność jelita                     42%    asymptomatyczna                    (58)

Refluks                                                                      69%    objawy brzuszne                       (59)

Przewlekłe zapalenie śluzówki żołądka         42%    objawy brzuszne                     (59)

Przewlekłe zapalenie dwunastnicy                67%    objawy brzuszne                     (59)

Guzkowate rozrosty tkanki                             89%    regres, objawy pokarmowe    (60)

Kolka                                                                        88%    regres, objawy pokarmowe    (60)

Układ pokarmowy autystów jest w stanie zapalnym (tabela 5) i wydaje się, że jest powiązanie pomiędzy układem pokarmowym a NO, które intensyfikuje objawy. Ból, zatwardzenie lub biegunka, refluks (61) i zwiększona przepuszczalność jelit (58) są powszechne. Przewlekły stan zapalny może zaistnieć w różnych miejscach przewodu pokarmowego, przy czym przeważa stan zapalny krętnicy z adenopatią (60-62). . W innych stanach chorobowych, stan zapalny przewodu pokarmowego związany jest z produkcją NO. Azotyny i azotany w osoczu są podwyższone przy kolce dziecięcej (63). W przewlekłej biegunce, poziom azotynów i azotanów w moczu skorelowany jest z cieknącym jelitem (64). Prawdopodobnie jelita dzieci z autyzmem produkują więcej NO. Azotyny wiążą glutation (75).

NO jest potencjalnie antybakteryjne (65). Niektóre wirusy i bakterie prowokują zatem wzmożoną produkcję NO w jelitach (66) i mózgu (67). Niestety, duża ilość NO oksyduje też tkankę organizmu gospodarza (66, 68). Dlatego w jelitach nadmiar NO zwiększa stan zapalny i przepuszczalność(69). Młode jelito jest wyjątkowo podatne na szkody wyrządzone przez NO, w szczególności krętnica (70-71). Zbyt wiele NO może zniszczyć ochronę przeciwoksydacyjną, obniżając poziomy glutationu (72,73). Niski glutation zwiększa poziom NO (74).

Nadmiar NO prowadzi do zwiększonej produkcji peroksyazotynów (ONOO), który atakuje cząsteczki. ONOO tworzy się przez reakcję NO z nadtlenkiem i jest bardziej reaktywne niż tworzące go substancje. Atakuje głównie, co ma związek z patofizjologią autyzmu: grupy tyrozynowe (np. syntazę glutaminową i reduktazę glutationową), grupy sulfhydrylowe, dysmutazę nadtlenkową (SOD), neurofilamenty, ceruloplazminę, receptory membran, kanały jonowe, G-proteiny i metioninę. ONOO powoduje niedobór antyoksydantów, oksyduje lipidy i niszczy DNA (31, 76).

NO jest zbyt słabe i nie nadaje się do dłuższego transportu. Ale hipotetycznie nadmiar NO w tkankach może powodować szkodę w innych miejscach organizmu poprzez krążące azotyny i azotany. Na przykład eksperymentalne wstrzyknięcie azotynów uszkadza barierę krew-mózg (77). Wyższe poziomy azotynów w autyzmie mogą wiązać ze sobą przewlekły stan zapalny jelit i uszkodzenie mózgu. W ten sposób uszkodzone jelito może negatywnie wpływać na mózg.

Albo odwrotnie, odległa produkcja NO może zwiększać poziomy produktów NO, a w konsekwencji prowadzić do wyższego poziomu NO w jelitach i stanu zapalnego jelit (78-79). Azotyny i azotany są selektywnie usuwane z obiegu przez jelita (80, 81). Flora jelit przekształca azotyny i azotany w NO przez redukcję enzymatyczną (82, 83), która przebiega w środowiskach o niskim stężeniu tlenu (84), jak w jelicie. NO wyprodukowane w odległym miejscu krąży jako S-nitrosohemoglobina a wytwarzanie z tej proteiny NO w jelitach jest możliwe dzięki niskiemu stężeniu tlenu i obecności sulfidów produkowanych przez niektóre bakterie (78). Nadmierna produkcja NO mająca miejsce gdziekolwiek w organizmie może również przyczyniać się do stanu zapalnego jelit.

Podatność mózgu i bariery krew-mózg na stres oksydacyjny

Mózg jest podatny na stres oksydacyjny z powodu wysokiego zapotrzebowania na energię, dużą ilość lipidów, żelaza i podatnych na oksydację katecholamin i niższe poziomy endogenicznych przeciwutleniaczy (85, 86). Bariera krew-mózg jest również podatna na uszkodzenia oksydacyjne (87). Kliniczne i laboratoryjne odkrycia sugerują istnienie przepuszczalnej bariery krew-mózg w autyzmie (tabela 6).

Tabela 6. Przepuszczalna bariera krew-mózg w autyzmie?

Wskazówki i predyspozycje                                               Pozycja w bibliografii

Wysoki poziom przeciwciał wobec protein mózgu                           (88-91)

Zaburzenia snu                                                                                                 (59, 92)

Kumulacja limfocytów przy naczyniach krwionośnych                 (38)

Wysoki poziom NO/siarczynów                                                              (37-39)

Niski cynk                                                                                                        (26, 28)

Wysoki poziom krążących cytokin                                                     (40)

Wysokie obciążenie metalami ciężkimi                                             (26, 35)

Zmiany behawioralne przy leczeniu glutationem to również wskazówka przepuszczalnej bariery krew-mózg przy autyzmie. U zdrowych zwierząt z nieprzepuszczalną barierą, nie jest możliwa penetracja jej przez glutation. Lekarze donoszą jednak o poprawie zachowania u niektórych dzieci leczonych glutationem (93), sugerując bezpośredni efekt na układ nerwowy.

U zwierząt eksperymentalne uszkodzenie oksydacyjne bariery krew-mózg powodowało uszkodzenie siatkówki (94, 95). W autyzmie często mają miejsce problemy z zasypianiem albo z wybudzaniem się w nocy (92), co sugeruje możliwość dysfunkcji siatkówki. Specyficzna natura zaburzeń nagłych ruchów gałek ocznych (REM) u autystów jest podobna do takich, które dotyczą innych chorób neurodegeneracyjnych (96). Oprócz faktu, iż melatonina jest skuteczna w leczeniu zaburzeń snu u autystów (97), skutki innych antyoksydantów na zaburzenia snu u autystów nie  były przedmiotem badań.

Obserwacje laboratoryjne sugerują przepuszczalną barierę krew-mózg w autyzmie. Kumulacja limfocytów przy naczyniach krwionośnych została ujawniona u trzech z siedmiu autystów (38), choć nie jest to objaw specyficzny. Wysokie markery autoimmunologiczne przeciwko proteinom układu nerwowego w autyzmie (88-91) sugerują nienormalną reakcję układu odpornościowego na mózg przez przeciekającą barierę krew-mózg.

Autoimmunologiczna reakcja na antygeny mózgu może być wzmożona przez tworzenie się neoepitopów, co ma miejsce przez oksydacyjne zmiany w proteinach (98). Gdy dojdzie do ich wytworzenia, mechanizmy autoimmunologiczne i oksydacyjne w mózgu autystów mogą nawzajem się wzmacniać, gdyż produkcja NO jest znacznie zwiększona przy chorobach autoimmunologicznych centralnego układu nerwowego (67).

Objawy autystyczne są związane u zwierząt z przepuszczalną barierą krew-mózg. Wyższe poziomy krążących cytokin (99), metali ciężkich (100), NO (101) i siarczynów (102) u zwierząt prowadzą do przepuszczalności bariery krew-mózg. Niski poziom cynku u autystów (27, 29) może również mieć znaczenie. Cynk w dostatecznych stężeniach chroni barierę krew-mózg przed uszkodzeniem (101) a niedobór cynku zwiększa jej przepuszczalność, w szczególności w połączeniu ze stresem oksydacyjnym (103).

Co ciekawe, wstępne dane dowodzą, iż istnieje przerost Gram-ujemnych bakterii tlenowych w okolicach gardła i odbytu (104). Te organizmy produkują endotoksyny odpowiedzialne za uszkodzenia bariery krew-mózg.

Niezbędne są dalsze badania bariery krew-mózg u autystów. Bardzo czuły rezonans magnetyczny wykazuje miejsca, w których bariera krew-mózg przecieka (105-106) a skanowanie mikroskopem elektronowym jasno pokazuje uszkodzenia tej bariery, włącznie z  zgrubieniami światła jelita, wakuolizacją komórek śródbłonka, ciałami inkluzyjnymi i nekrozą, choć takie zmiany mogą być rzadkie (100).

Większy stres oksydacyjny i układ pokarmowy


Badania nad niedokrwieniem i reperfuzją wykazują, że układ pokarmowy jest bardzo wrażliwy na uszkodzenia oksydacyjne (31,107). Trawione toksyny (peroksydowane tłuszcze, elektrofiliczne zanieczyszczenia w żywności) i metabolity bakterii i grzybów przewodu pokarmowego to duże obciążenie oksydacyjne dla układu pokarmowego (108). Wystarczające ilości GSHPx (aby zredukować peroksydację), GST (aby zredukować elektrofile) i GSH (aby wspomóc działanie GSHPx i GST) chronią układ pokarmowy przed oksydacją.

Jak wcześniej wskazano zapalenie krętnicy i adenopatia są bardzo częste u dzieci autystycznych, u których występują objawy gastroenterologiczne. Krętnica jest wyjątkowo podatna na uszkodzenia oksydacyjne. U zwierząt GST jest 36 razy niższe w krętnicy niż w jelitach (109). Podwójne uszkodzenie genów odpowiedzialnych za gastroenterologiczne GSHPx skutkuje zapaleniem śluzówki krętnicy, a nie innych części przewodu pokarmowego (110). W zapaleniu jelit, ekspresja NOS jest najbardziej intensywna w krętnicy i jest ona też najbardziej podatna na stres oksydacyjny spowodowany przez NO (111).

Nadmiar NO z dużym prawdopodobieństwem odpowiada za symptomy gastroenterologiczne u autystów (zobacz tabelę 7). NO rozkłada mucynę, która chroni jelito przed podrażnieniami (108). Nadmiar NO zwiększa przepuszczalność jelit (112), która przeważa u autystów (58).

 

Tabela 7. Odmienności układu pokarmowego u autystów prawdopodobnie spowodowane częściowo przez nadmiar NO

Odmienności w autyzmie                               Pozycja w bibliografii

Stan zapalny                                                                        (66)(68)(70)(71)

Zwiększona przepuszczalność jelit                            (69)

Słabe napięcie zwieraczy                                              (113)

Słabe skurcze woreczka żółciowego                         (105)

Powolne trawienie                                                           (70)

W nadmiarze NO powoduje rozluźnienie zwieraczy (113) a dwie trzecie dzieci z autyzmem, u których występują objawy gastroenterologiczne dotyka refluks (59). Nadmiar NO ogranicza skurcze woreczka żółciowego (114), co może odpowiadać za jaśniejszy kolor stolców zaobserwowany przez lekarzy i rodziców wielu dzieci z autyzmem. Słaby przepływ żółci ma wpływ na gorsze odżywienie i ogranicza dostarczanie ochronnego GSH do śluzówki jelit.

Nadmiar NO powoduje także powolne trawienie (70). Wiele dzieci z autyzmem cierpi na zatwardzenia. Możliwe, że złe wchłanianie i przerosty flory bakteryjnej powodują tendencję do zatwardzeń u jeszcze większej ilości dzieci z autyzmem.

Stres oksydacyjny, niska produkcja energii i ekscytotoksyczność

Stres oksydacyjny, niska produkcja energii i ekscytotoksyczność są powiązane ze sobą. Na przykład produkujące energię mitochondria są podatne na uszkodzenia oksydacyjne (86, 115-120) a uszkodzone mitochondria wpuszczają więcej oksydantów (121-123). Poza tym niewystarczająca produkcja energii uzasadnia predyspozycje do aktywacji receptorów pobudzających, zmniejszoną obronę przed wewnątrzkomórkowym wapniem, zwiększoną oksydację i apoptozę (86, 124).

Nadmierna stymulacja receptorów pobudzających skutkuje uszkodzeniem oksydacyjnym układu nerwowego (125, 126), a większy poziom stresu oksydacyjnego zwiększa wydzielanie glutaminianu i powoduje dalej idącą stymulację tych receptorów (127, 128). Anatomia komórkowa koreluje z tą zależnością: receptory glutaminianu i NOS w mózgu i jelitach (129) istnieją blisko siebie.

Jak widać, zwiększony stres oksydacyjny w autyzmie implikuje możliwe problemy w produkcji energii i ekscytotoksyczności

Upośledzona produkcja energii w autyzmie

Rezonans magnetyczny wykazał zmniejszone poziomy ATP w mózgach autystów (130). Wyższy poziom mleczanów (131-132), wyższy pirogronian (133), wyższy amoniak i niższa karnityna (134) są charakterystyczne dla autystów, chociaż nie wszystkie dzieci z autyzmem mają niższe parametry. Różnice te sugerują dysfunkcje mitochondrialne w autyzmie, a odmienności mitochondrialne zostały wykazane w opisach przypadków osób z autyzmem (135-136).

Nadmierny NO w autyzmie może upośledzać produkcję energii, bezpośrednio albo przez ONOO. Nadmiar NO redukuje fosforylację oksydacyjną, obniża ATP i zwiększa poziom mleczanów (137). NO bezpośrednio ogranicza kompleks IV, powodując wyciekanie nadtlenków i ograniczenie GSHPx (3). ONOO selektywnie uszkadza kompleksy I i III (138). NO dezaktywuje koenzym A (CoA), zabierając mitochondriom tę cenną „walutę energetyczną” (78).

Wskaźniki eksytotoksyczności w autyzmie


Wyższy poziom zewnątrzkomórkowego glutaminianu w mózgu związany jest z ekscytotoksycznością, w szczególności gdy zaburzony jest metabolizm energetyczny (139). Dekarboksylaza glutaminiowa (GAD) przekształca glutaminian w GABA, która zmniejsza ekscytotoksyczność. Zmniejszenie GAD w mózgu umożliwia ekscytotoksyczność, zwiększając poziom glutaminianu i zmniejszając GABA.

Istnieje hipoteza, że w autyzmie jest niedobór GAD. Ilość GAD w mózgach autystów badanych pośmiertnie była obniżona o połowę (140). Pomiary te są zbieżne z wynikami. GAD w czerwonych krwinkach jest niższy u autystów (141), GAD (142), syntetaza glutaminiowa (143), transporter glutaminowy (144) i receptory GABA (9) są podatne na stres oksydacyjny (52).

Czy jest to efekt czy przyczyna większego stresu oksydacyjnego w autyzmie, zwiększona ekscytotoksyczność to rozsądna hipoteza i przedmiot zainteresowania klinicystów. Ekscytotoksyczność może zostać zwiększona przez doustne przyjmowanie ekscytotoksyn (145). Autor publikacji popiera innych lekarzy, doradzając pacjentom z autyzmem unikania ekscytotoksycznych polepszaczy smaku jak glutaminian sodu czy aspartam w pożywieniu i napojach.

Upośledzony układ cholinergiczny w autyzmie

 

Wyniki laboratoryjne i obserwacje kliniczne sugerują znaczne deficyty cholinergiczne u autystów. Aktywność receptorów cholinergicznych jest niższa w korze mózgowej autystów (50). Leczenie agonistami cholinergicznymi (146-147) albo prekursorami acetylcholiny (148) poprawia zachowanie u autystów.

Reakcja na bethanecol, specyficznego agonistę cholinergicznych receptorów muskarynowych, uzasadnia twierdzenie o upośledzeniu układu muskarynowego w autyzmie. Doustna dawka bethanecolu (2,5-12,5 mg) normalizuje zwiększone źrenice, poprawia perystaltykę jelit, reguluje sen i zachowanie u wielu dzieci z autyzmem. Czasami duża poprawa wiąże się juz z pierwszą dawką bethanecolu (146), autor publikacji potwierdza tę obserwację.

Neuroradiologia pokazuje zmniejszony przepływ krwi w mózgu przy autyzmie (149-150), co pogarsza się z wiekiem (151) i zwężenie naczyń krwionośnych w okolicach receptorów muskarynowych (152-153). Możliwe wytłumaczenie tak nagłej reakcji na bethanecol to nagła poprawa krążenia. Bethanecol może stymulować łatwo dostępne receptory muskarynowe w naczyniach krwionośnych i powodować dokrwienie mózgu. Tę hipotezę łatwo będzie zbadać.

Zaburzenia muskarynowe w autyzmie mogę generować większy stres oksydacyjny. Eksperymenty wykazały, że sygnały muskarynowe chronią komórki przed stresem oksydacyjny i apoptozą (154). Ilość receptorów muskarynowych zmniejsza się przy stresie oksydacyjnym (155).

Receptory muskarynowe są wrażliwe na toksyczne działanie NO (156) i bardziej niż inne typy receptorów, są wrażliwe na hamujące działanie ONOO (157) i innych oksydantów (158). Jak wskazano wcześniej, nadmiar NO w autyzmie może tłumić CoA. Poza rolą tego koenzymu w produkcji energii, jest on niezbędnym prekursorem acetylcholiny, cholinergicznego neuroprzekaźnika.

Niewystarczająca ilość CoA powoduje, że neurony cholinergiczne są wrażliwsze na różne toksyny, w tym nadmierne NO (51). Niskie CoA odgrywa znaczącą rolę w innych encefalopatiach (54).

Antyoksydacyjne składniki odżywcze w leczeniu autyzmu

Wysokie dawki witaminy C

Przeprowadzono podwójnie „ślepą”, z wykorzystaniem placebo, eksperymentalną próbę podawania 8 g na 70 kg masy ciała dziennie doustnej witaminy C w 2-3 podzielonych dawkach u dzieci autystycznych umieszczonych w ośrodkach (159). Niektórym z dzieci przed próbą podawano dawki do 4 g witaminy C. Próba obejmowała trzy dziesięciotygodniowe okresy. W drugiej i trzeciej fazie próby połowa dzieci otrzymywała najpierw placebo a potem witaminę C. Druga połowa – najpierw witaminę C a potem placebo.

Po każdym okresie przeprowadzano badania psychometryczne. Całkowity wynik na skali Ritvo-Freemana, która bada 47 zachowań społecznych, emocjonalnych, sensorycznych i językowych wykazał poprawę u grupy, która przeszła z placebo do witaminy C i pogorszenie w grupie, która z witaminy C przeszła do placebo (P=0.02).

Trzepotanie, machanie, bujanie się i kręcenie w szczególności uległo poprawie przy podawaniu witaminy C i u tych, którzy wyjątkowo zareagowali na to leczenie, była to poprawa „oczywista”, jak wskazali badacze. Nie zanotowano efektów ubocznych poza rozluźnieniem stolca, co może ograniczać ilość spożywanej przez dzieci witaminy C.

Witamina C to silny antyoksydant. To sugeruje – ale nie dowodzi – mechanizmu antyoksydacyjnego przy efekcie terapeutycznym. Efekty antyoksydacyjne witaminy C wydają się pasować do mechanizmów spotykanych w autyzmie. Witamina C zapewnia dobrą ochronę przed NO i ONOO (31). Witamina C chroni neurony przed neurotoksycznością glutaminianu (160-161). Witamina C blokuje hamowanie transportu glutaminianu przez NO (162), co ma miejsce głównie w obecności miedzi (163), która jest często podwyższona w krwi autystów (28).

Karnozyna

Karnozyna, naturalnie występujący aminokwas znajdujący się w dużych stężeniach w mózgu, jest silnym antyoksydantem i chroni neurony (164-166). „Podwójnie ślepa”, próba z wykorzystaniem placebo, trwająca 8 tygodni i polegajaca na przyjmowaniu 400 mg karnozyny, doustnie i dwa razy dziennie dowiodła znacznej poprawie u dzieci autystycznych, w porównaniu z placebo. Badania psychometryczne dowiodły poprawy w słownictwie (P=0.01), socjalizacji (P=0.01), komunikacji (P=0.03) i zachowaniu (P=0.04) (167). Efekty uboczne były zróżnicowane – sporadyczna hiperaktywność ustawała przy zmniejszeniu dawki, a żadne dziecko nie musiało przerwać próby z powodu efektów ubocznych.

Możliwe mechanizmy fizjologiczne działania karnozyny na autystów to jej prewencyjne działanie przed toksycznością NO (168), wiązanie się z wolnymi rodnikami i reakcyjnymi wodorotlenkami i możliwość wiązania się z metalami jak np. miedź (169). Kompleks miedź-karnozyna ma działanie antyoksydacyjne, podobne do SOD, co wykazano w badaniach in vitro (170).

Witamina B6

Wszystkie hipotezy związane z autyzmem powinny uwzględniać bardzo skuteczną próbę z podawaniem wysokich dawek witaminy B6, przeprowadzoną przez Bernarda Rimlanda. Wiele kontrolowanych prób wykazało, że witamina ta w powiązaniu z magnezem, poprawia zachowanie u wielu dzieci z autyzmem (148, 171-172). Poziomy B6 w osoczu są zwykle w normie, ale aktywność B6 przebadana dzięki panelowi EGOT, była znacząco niższa u grupy dzieci z autyzmem niz w grupie kontrolnej (26).

Kinaza pirydoksalu, która konwertuje B6 do jej aktywnej formy pirydoksal-5-fosfatu (P-5-P) może również działać słabiej u autystów. Wstępne badania sugerują bardzo słabe wiązanie się kinazy pirydoksalu w czerwonych krwinkach autystów, co odzwierciedla wysoki współczynnik Km (stałą Michaeli’ego) (26). Aktywność P5P we krwi jest poniżej normy u 40% dzieci z autyzmem (27).

Upośledzenie kinazy pirydoksalu u autystów jest niewyjaśnione. Niższy poziom cynku (26, 28) i status energetyczny w autyzmie to dobre wyjaśnienie tego fenomenu, gdyż kinaza pirydoksalu wymaga dla swojej aktywacji uwolnienia cynku z metalotioneiny, co jest zależne od ATP (173). Należy też rozważyć działanie czynników hamujących. Najsilniejsze z nich to grupy węglowe, które są egzogenicznymi związkami chemicznymi, takimi jak hydrazyna stosowana jako paliwo rakietowe (174). Są one potencjalnymi czynnikami hamującymi kinazę pirydoksalu. Powstają z oksydacyjnej zmiany lipidów w organizmie, protein i cukrów i są znacznie podwyższone w stanach chorobowych związanych z nadmiarem NO (22).

Podczas, gdy przyczyna słabej funkcji B6 w autyzmie nie jest wyjaśniona, możemy być pewni, że wpływ na to ma oksydacja. Nawet niewielki niedobór B6 ma związek z niższym GSHPx i aktywnością reduktazy glutationowej, zmniejszonym stężeniem glutationy i wyższym stopniem peroksydacji lipidów (30).

Niedobór B6 powoduje zaburzenia mitochondrialne i są one związane ze zwiększonym stresem oksydacyjnym (175-176). P5P jest niezbędne dla syntezy kluczowych składników mitochondrialnych: kryształów żelazo-siarka (dla kompleksu I, II ,III) i hemu (dla kompleksu IV( (177) oraz koenzymu Q10 (178). Badania wykazały, że P5P chroni neurony przed stresem oksydacyjnym, przez zwiększoną produkcję ATP i wykorzystywanie nadmiernego glutaminianu (179).

Obniżona funkcja B6 obniża prób ekscytotoksyczności. P5P jest niezbędny do powstania GAD, którego upośledzenie może spowodować nadmierna aktywację receptorów glutaminiowych, NO i stres oksydacyjny (180). P5P chroni GAD, który jest wrażliwy na uszkodzenia oksydacyjne (142), przed dezaktywacja (181) . P5P chroni też GSHPx w przewodzie pokarmowym przez formowanie kompleksów (182). Co można przewidzieć, wprowadzenie P5P do organizmu zwierząt zwiększa aktywność GAD w mózgu (183).

Z tych powodów pacjenci z autyzmem mogą odnotować poprawę przez duże dawki witaminy B6 poprzez zwiększenie produkcji energii, zmniejszenie ekscytotoksyczności, zwiększenie GADA i redukcję stresu oksydacyjnego. Leczenie B6 uzupełnia również naturalne jej niedobory spowodowane przez nadmierne oksydanty. B6 są bardzo podatne na uszkodzenia przez oksydanty takie jak wodorotlenek (OH) i dwutlenek (O2) (184-186). Oksydacyjne uszkodzenie B6 ma wpływ na liczne enzymy i neuroprzekaźniki u autystów.

Magnez

W eksperymentach na zwierzętach niedobór magnezu zwiększał NO (187), peroksydy lipidowe (188) i obniżał antyoksydanty w osoczu (189). Niższy poziom magnezu wyraźnie sprzyja oksydacji. Suplementacja magnezem obniża stres oksydacyjny w eksperymentach na zwierzętach z wysokim poziomem stresu oksydacyjnego (190).

Jako grupa dzieci z autyzmem mają niższy poziom magnezu w czerwonych krwinkach (26). Podwójnie ślepe próby wykazały poprawę behawioralną u dzieci, którym podawano wysokie dawki B6 i magnezu ale nie było poprawy, gdy podawano wyłącznie magnez albo B6 (191). Ten synergizm może mieć ważną funkcję. Na przykład zależna od B6 kinaza, która ma wpływ na rożne funkcje muskaryczne i GABA-nergiczne  wymaga zarówno B6 jak i magnezu.

Magnez chroni też przed stresem oksydacyjnym dzięki funkcjom nie związanym z B6/

Produkcja NADPH w celu redukcji glutationu wymaga magnezu. Syntaza ATP, która katalizuje produkcję energii poprzez fosforylację oksydacyjną, jest wrażliwa na magnez (192). W mózgu magnez blokuje nadmierne podrażnienie receptorów ekscytotoksycznych modulując kanały wapniowe (193).

Cynk

Niższy poziom cynku u autystów został potwierdzony licznymi badaniami. Zawartość cynku w czerwonej krwince, bardzo wrażliwy wskaźnik niedoboru cynku, jest wyraźnie niższy u autystów (26) a w indywidualnych przypadkach może być tak niski jak połowa najniższej wartości granicznej dla grupy kontrolnej (194). Cynk w osoczu jest poniżej normy u 40% dzieci z autyzmem (28).

Niski poziom cynku to wyższe ryzyko stresu oksydacyjnego. U zwierząt dieta uboga w cynk zmniejsza całkowity poziom glutationu, witaminy E, GST, GSHPx i SOD, a zwiększa ilość peroksydów lipidowych i wolnych rodników w tkankach, mitochondriach i membranach komórkowych (195-198). U starszych osób suplementacja cynkiem zmniejsza ilość peroksydów lipidowych (197). U diabetyków z retinopatią suplementacja cynkiem zwiększa poziom GSHPx i zmniejsza poziom peroksydów lipidowych (200).

Cynk ma wpływ na układ pokarmowy. Niedobór cynku u zwierząt zwiększa NOS w układzie pokarmowym i podatność na infekcje gastrologiczne (201). Z drugiej strony suplementacja cynkiem zmniejsza lipoksydację układu pokarmowego (202) i zmniejsza przepuszczalność jelit (203).

Klinicyści coraz częściej doceniają cynk jako stały suplement w leczeniu autyzmu. William Walsh, który zebrał dane o cynku i miedzi wśród ponad 3.500 dzieci z autyzmem w Pfeiffer Treatmen Center stwierdził, że wysokie dawki cynku (2-3 mg/kg wagi ciała dziennie jako dobrze wchłaniany pikolinian cynku) są niezbędne dla znormalizowania poziomów cynku i pozytywnej reakcji klinicznej (204).

Okresowe mierzenie cynku w osoczu jest wykorzystywane po to, aby upewnić się, że nie przekroczył on norm laboratoryjnych. W dniu badania nie podaje się cynku, aby nie zaburzyć wyniku. Suplementacja cynkiem obniża poziom miedzi. Bada się zatem poziom miedzi w osoczu, aby uniknąć niedoboru (205).

Nadmiar miedzi jest ewidentny w przypadku autyzmu. Wyższy poziom miedzi w osoczu (36), niższa ceruloplazmina (6) i wyższy poziom niezwiązanej miedzi w osoczu (205) to częste wyniki u dzieci z autyzmem. Miedź, szczególnie niezwiązana, jest prooksydacyjna. Suplementowanie jej jest rzadko niezbędne w autyzmie i nawet małe dawki miedzi mogą mieć niekorzystne efekty behawioralne (205).

Wyższy stosunek miedzi do cynku w osoczu (u autystów wynosi 1.63, a w grupie kontrolnej 1.15, P<0.0001) (36), jest w znaczący sposób powiązany ze stresem oksydacyjnym w chorobach neurodegeneracyjnych (206). Suplementacja cynkiem normalizuje stosunek miedź/cynk (205).

Wysokie dawki cynku mogą obniżyć poziom manganu. Dawki manganu podawane oddzielnie z cynkiem w proporcji 5 mg manganu na 30 mg cynku przynoszą korzyść, należy również monitorować ilość manganu w serum aby uniknąć nadmiaru (205).

Funkcja antyoksydacyjna cynku jest nie do przecenienia. Jest wiele ważnych mechanizmów:

- cynk chroni grupy –SH przez oksydacją – np. chroni kluczowy enzym antyoksydacyjny GSHPx (195). Pierwszym rezultatem niedoboru cynku to utrata grup –SH przez membrany i w konsekwencji ich osłabienie (207)

- cynk współzawodniczy z prooksydacyjnymi metalami jak miedź i żelazo  i zapobiega katalizowanej przez metale produkcji wolnych rodników (200). Enzymy zawierające miedź są podatne na autooksydację, czemu zapobiega cynk (198). Oksydacja membran spowodowana przez miedź jest również uniemożliwiona przez cynk (208)

- cynk to niezbędny składnik miedziowo-cynkowego SOD, kluczowego enzymu antyoksydacyjnego. Nawet niewielki niedobór cynku u ludzi zmniejsza aktywność SOD (209). Gdy brak cynku SOD staje się prooksydacytjny, katalizując biomolekularny atak ONOO (148). SOD bez cynku jest neurotoksyczne (210).

- cynk indukuje syntezę metalotioneiny (MT) (211), skutecznego pogromcy wolnych rodników (w tym ONOO) (212) i sekwestranta miedzi i innych metali ciężkich (213, 214). U zwierząt wysokie dawki cynku powodują wyższe poziomy MT w układzie pokarmowym (215). Średni niedobór cynku u zwierząt, kiedy negatywne efekty zdrowotne nie są zwykle jeszcze jawne, związany jest ze znaczną redukcją MT w siatkówce oka (213).

MT zwykle wzrasta jako reakcja obronna na stres oksydacyjny, ale zmniejsza się wówczas gdy jest niedobór cynku (214).

MT blokuje toksyczność miedzi ale ten efekt ochronny nie działa przy nadmiarze NP., który wyciąga miedź z MT, powodując peroksydację lipidów i apoptozę (46). W mózgu MTIII, czynnik ograniczający wzrost neuronów, jest szczególnie wrażliwy na usuwanie miedzi przez oksydanty (216). Taki mechanizm może być związany z większym rozmiarem mózgu u dzieci z autyzmem (204).

- cynk wspiera fizjologiczną blokadę receptorów glutaminianowych (139), zmniejszając ekscytotoksyczność

Różne biocząsteczki są chronione przed oksydacją przez cynk. Tworząc kompleksy z fosfolipidami (217) cynk blokuje oksydację membran tłuszczowych (209). Cynk blokuje peroksydację wielonasyconych tłuszczy nie połączonych z membranami (218). Cynk generalnie hamuje oksydację enzymów i innych protein (198), w tym tych z funkcjonalnymi grupami –SH podatnych na łagodne stany oksydacyjne: Na, K-ATPaza, CA-ATPaza, akwaporyna, kanały wapniowe, kanały NMDA-wapń (207).

Hipotetycznie stres oksydacyjny może zmniejszyć retencję cynku. Na poziomie cząsteczkowym oksydanty (w tym NO) wyrzucają cynk z protein, łącznie z MT (197, 216, 219, 220). Potrzeba badań aby określić, czy ten fenomen rozciąga się na zmniejszoną retencję cynku w całym organizmie w warunkach większego stresu oksydacyjnego. Schizofrenicy mają zmniejszone wydalanie cynku z moczem w odpowiedzi na wysokie dawki B6 (221), co może mieć związek z antyoksydacyjnymi efektami B6.

Selen

            Średni poziom selenu w czerwonej krwince jest niższy u dzieci z autyzmem (26) i może to mieć związek z niższymi poziomami GSHPx (23-24). Jak wcześniej wskazano, aktywność GSHPx odpowiada obniżonym poziomom selenu (31). Lekarze często podają autystom doustnie selen w dawce 50-300 mcg dziennie.

GSHPx jest nie do zastąpienia w zadaniu chronienia organizmu przed oksydacją, w szczególności w ochronie mitochondriów, które nie zawierają katalazy chroniącej przed peroksydami (222). Dodatkowo, GSHPx zapewnia ochronę przed organicznymi wodoroperoksydami, które podtrzymują niszczącą reakcję łańcuchową lipoksydacji (85, 222).

Niższa aktywność GSHPx przy niedoborze selenu związana jest z uszkodzeniami peroksydacyjnymi i dysfunkcją mitochondriów (29). Fizjologiczny efekt niedoboru selenu może zostać częściowo zrekompensowany dawkami witaminy E. (31)

GSHPx jest wrażliwy na dezaktywację przez miedź (182) i rtęć (223). Ekspozycja na rtęć skutkuje zmniejszoną aktywnością GSHPx i zwiększoną peroksydacją lipidową (224). U zwierząt GSHPx jest chronione suplementacją P5P (223) i cynku (225).

Mniejsza aktywność GSHPx w autyzmie umożliwia intensywniejszą peroksydację lipidową membran, która upośledza działanie receptorów i enzymów, prawdopodobnie z powodu zmian dostosowawczych i zmienionych wiązań (226). Peroksydacja lipidowa ogranicza odbiór receptorów muskarynowych, adrenergicznych, serotonicznhych i insulinowych, jak również Na,K-ATPazę i syntezę glutaminową (227).

Glutation w leczeniu autyzmu

W jednym z badań dożylne podawanie glutationu poprawiło stan pacjentów z chorobą Parkinsona (105). Podobnie, dożylny glutation poprawia zachowanie wielu dzieci z autyzmem, włącznie z zahamowaniem licznych stereotypowych zachowań, jak np. trzepotania rękami. Rzadko pojawiają się reakcje związane z histaminami (katar, kaszel łzawienie z oczu) (93).

Doustne GSH, w dawce do 30 mg/kg wagi ciała dziennie w kilku dawkach pomogło niektórym dzieciom z mukowiscydozą, która jest stanem oksydacyjnym (126). Autor uważa, że podobne dawki doustnego GSH pomogły kilku dzieciom z autyzmem. Odwrotna do zamierzonej reakcja na doustne GSH wystąpiła u dzieci z niskim poziomem cynku w osoczu. Ta reakcja mogła być skutkiem nagłej indukcji metalotioneiny przez GSH przy czasowym niedoborze cynku (228).

Doustne GSH jest dobrze przyswajalne. U zwierząt poziom GSH w osoczu podwaja się w ciągu 2 godzin od dużej dawki doustnej, głównie z powodu absorpcji nienaruszonego GSH (229). Zwiększone poziomy GSH w organach zwierzęcych można przypisać absorpcji nhienaruszonego GSH (230). U zdrowych osób doustna dawka GSH 15 mg/kg zwiększa poziom GSH w osoczu od 2 do 5 razy (229).

Potrzeba GSH w celu zaleczenia śluzówki układu pokarmowego może przekraczać nawet te dawki (229), co można przewidywać u autystów. Śluzówka wykorzystuje GSH z układu pokarmowego (231-232) i osocza (231) aby radzić sobie z oksydacją. Przy normalnej fizjologii wydzielanie GSH z żółcią odzwierciedla dużą część całkowitej produkcji GSH, a żółć regularnie obmywa całą śluzówkę jelita wydzielanym GSH.

Poważne uszkodzenie jelita cienkiego i grubego, z opuchlizną i degeneracją tkanki to efekt niedoboru GSH w jednym z eksperymentów; można temu zapobiec podając doustne GSH które jest powiązane ze zwiększonym GSH w śluzówce (233). U zwierząt poziom GSH w śluzówce podnosi się w nagły sposób po doustnym podaniu GSH, jednak w mniejszym stopniu w krętnicy (234). Doustne GSH może obniżyć poziom stresu oksydacyjnego w jelitach autystów.

Zauważono też silne właściwości antywirusowe GSH w badaniach in vitro (235).

Oksydacja w nowych kierunkach terapii

Podskórne zastrzyki witaminy B12 w formie metylkobalaminy w ilości 1250-7500 mcg co tydzień albo i codziennie znacznie poprawiają zachowanie dzieci z autyzmem (236). Jeden z pośredników B12 – kobalamina – jest bardzo wrażliwa na uszkodzenia oksydacyjne (237), a zatem skutkiem zwiększonego stresu oksydacyjnego może być funkcjonalny niedobór B12.

Zwiększenie NO i azotynów w autyzmie wysyła B12 ostrzegawczy sygnał. Pośrednia forma B12 reaguje w szczególny sposób z NO. (238-240) a azotyny dezaktywują metylkobalaminę (241). NO wiąże B12 i upośledza funkcje enzymatyczne, np. fizjologiczne stężenie NO w studiach in vivo hamuje syntezę metioninową (242). Duże dawki B12 może odwrócić ten fizjologiczny efekt nadmiaru NO (243).

Doustne podawanie kwasu folinowego zwiększa poziom glutationu i stosunek GSH do GSSG u autystów (25), w ten sposób powstaje kwestia funkcjonalnego poziomu kwasu folinowego u autystów. 5-MTHF jest bardzo podatny na oksydację (241, 244) i jego degradacja jest intensywniejsza im większy jest stres oksydacyjny (245). Niedobór kwasu folinowego (który może być zwiększony przez niedobór B12) zmniejsza poziomy ATP i zwiększa ekscytotoksyczność (246).

Suplementacja aminokwasami może być użyteczna wśród autystów. Poziomy cysteiny w osoczu były o wiele niższe u 286 niesuplementowanych dzieci autystycznych (236). Cysteina jest produktem pochodzącym z metioniny i zapewnia trzecią cząsteczkę w glutatione i metalotioneinie.

Doustna n-acetylp-cysteina (NAC) jako źródło cysteiny jest dobrze tolerowana przez dzieci z autyzmem, nie jest tolerowane podawanie cysteiny. Dożylny NAC (150-600 mg NAC + 1000-2000 mg witaminy C + 1 ml dwuwęglany sodu) poprawił zachowanie u niektórych dzieci (236).

Pfeiffer Treatment Center jest zwolennikiem dużych dawek cynku z właściwym suplementem doustnym (247), który zawiera aminokwasy tworzące MT. Wstępne dane wskazują na to, że ta tak zwana formuła „Metallothionein Promotion” zwiększa poziomy MT (37). Niektórzy rodzice potwierdzają poprawę u dzieci z autyzmem po intensywnej ekspozycji na naturalne światło słoneczne. Promieniowanie ultrafioletowe powoduje nagłe wydzielanie metalotioneiny (248), a zatem może przynieść korzyść przy wystarczającym poziomie cynku. (…)

Dieta bezkazeinowa i bezglutenowa poprawia zachowanie dzieci z autyzmem, prawdopodobnie przez redukcję skutków nadmiaru opioidów (251). Wysoki poziom peptydów z kazeiny i glutenu odnotowano w moczu autystów (252), prawdopodobnie z powodu oksydacji enzymu niezbędnego do całkowitego trawienia kazeiny i glutenu (253). Dodatkowo oksydacja wzmacnia wiązania opioidowe a GSH je osłabia (254).

Suplementacja kwasami tłuszczowymi przynosi korzyści autystów (255). Niższe koncentracje nienasyconych kwasów w osoczu (256) i membranach czerwonych krwinek (8, 257) sugerują oksydacyjne wydalanie tych kluczowych składników budowy membran i prekursorów prostaglandyn. Wydalanie kwasów omega-3 i omega-6 jest charakterystyczne dla schizofrenii i ma związek ze zwiększoną ilością peroksydów lipidowych (258).

Kwas EPA jest niższy w membranach czerwonych krwinek dzieci z autyzmem, a w grupie dotkniętej regresem jest niższy poziom kwasu arachidonowego (8). Olej z ryb, bogaty w EPA tłumi produkcję NO i innych wolnych rodników (30, 259) i zwiększa aktywność GST i mitochondrailnego SOD (259). Poziomy NO i peroksydów lipidowych w mózgu są niższe u zwierząt suplementowanych olejem z ryb (260).

Podawanie oleju z ryb zwierzętom z niedoborem B6 powoduje zwiększenie peroksydacji lipidowej (261). Zaleca się w autyzmie wcześniejsze podawanie witaminy B6 i innych antyoksydantów aby zapobiec tworzeniu się toksycznych peroksydów lipidowych.

Ciągłe podawanie oleju z ryb dzieciom autystycznym skutkuje znacznym obniżeniem się poziomu DGLA w membranie czerwonej krwinki (8). DGLA to prekursor dla prostaglandyny-1, która wzmacnia ścianki jelita i odporność. W związku z tym dzieci, którym podawany jest olej z ryb powinny dostawać równoważącą go dawkę oleju z wiesiołka zawierającego GLA – prekursor DGLA.

Po naładowaniu antyoksydantami dzieci dobrze tolerują dawkę 3 gramów oleju z ryb i 1 grama oleju z wiesiołka (262). Optymalne dawki różnią się w zależności od okresu podawania i potrzeb jednostki.

Laboratoryjne określenie poziomu stresu oksydacyjnego

Wykorzystanie markerów oksydacji w diagnostyce autystów to temat nowy. Różne badania krwi, moczu, stolca i wydychanego powietrza (263) mogą być użyteczne w określaniu optymalnych dawek i kombinacji składników odżywczych oraz innych interwencji.

Niektóre możliwości diagnostyczne dotyczą poziomu peroksydów lipidowych, 4-hydroksynonenalu (4-HNE), malondialdehydu (MDA), izoprostanów, nitrotyrozyny, oksydowanych kwasów nukleinowych, zaawansowanych produktów końcowych glikacji, apoptozy komórkowej, stężenia antyoksydantów i składników odżywczych, poziomu azotynów i azotanów, zdolności enzymów do wiązania. Dziesięciokrotnie wyższe poziomy neopteryny (264), wskaźnika nadmiernej syntezy NO (76) sugerują przydatność tego badania.

W obszarze badawczych mózg i jelita autystów powinny być diagnozowane pod kątem specyficznych markerów oksydacyjnych. Konwencjonalne badanie tkanki mózgowej autystów może nie wykryć utraty neuronów z powodu apoptozy, wskaźnika stresu oksydacyjnego (265), gdyż bardzo szybko organizm usuwa komórki poddane apoptozie (266).

Wskazówki na przyszłość

W tym artykule podkreślono dane i pomysły sugerujące, że większy stres oksydacyjny w autyzmie może być istotny w ekspresji objawów autystycznych i być może w patogenezie autyzmu. Jeżeli okaże się to ważnym czynnikiem przy badaniu autyzmu, na znaczeniu zyska też właściwe odżywianie autystów (267), gdyż jest to droga do modulowania stresu oksydacyjnego.

Na pewno, aby zapobiec rozwojowi autyzmu musimy zmienić pewne szkodliwe nawyki. Konsumpcja wolnych rodników w pożywieniu smażonym w olejach wielonasyconych (268) musi zostać ograniczone. Wchłanianie ekscytotoksycznych polepszaczy smaku, chlor, azotyny i miedź w wodzie – również należy poddać ponownej ocenie. Prooksydacyjne (269, 271) i antyoksydacyjne (272, 275) działanie leków musi zostać bardziej zasygnalizowane.

Stres oksydacyjny można leczyć, jego wpływ może zacząć się już w życiu płodowym. Trzeba oszacować, jak oksydacja wpływa na ciążę i jak zmienia rozwój dziecka. Np. niedobór cynku u matki powoduje oksydacyjne uszkodzenie DNA u noworodków małp (276). Wszechobecne polepszacze smaku i ekscytotoksyny, glutaminian sodu – przechodzą przez łożysko i powodują neurotoksyczność u płodów gryzoni (277).

Wyższe NO stwierdzone w autyzmie może dostarczyć inspiracji do wyjaśnienia etiologii, rozwoju i kierunków leczenia autyzmu. Infekcje wirusowe mogą zwiększyć produkcję NO w mózgu i innych tkankach, a zatem wyższa produkcja NO w autyzmie sprawa, że tym bardziej trzeba badać autystów na przeciwciała wirusowe.

Wyższe NO w autyzmie może spowodować skupienie uwagi na antyoksydantach niszczących NO. Witamina C dobrze zwalcza NO (278), jak również melatonina i kwas moczowy. Melatonina niszczy zarówno NO jak i ONOO (279). Doskonale niweluje stres oksydacyjny w mózgu i układzie pokarmowym (280-281), zwiększa aktywność GSHPx (282) i skutecznie leczy zaburzenia snu (97).

Kwas moczowyto 60% całkowitej ilości antyoksydantów w osoczu (283). Skutecznie wiąże niektóre metale, a w szczególności niszczy NO i ONOO (284). Podawanie doustnej inozyny, prekursora kwasu moczowego może dać dobry rezultat przy stwardnieniu rozsianym (45) i w autyzmie.

Badanie i poprawianie funkcji mitochondrialnych aby zwiększyć produkcję energii powinno mieć wysoki priorytet w leczeniu autyzmu. Acetyl-L-karnityna i kwas alfa-liponowy zwiększają funkcję mitochondriów i redukują stres oksydacyjny u zwierząt (119). Doustne podawanie L-karnityny, metabolitu mitochondriów, poprawia zachowanie u dzieci z zespołem Retta (285) i w trakcie są badania nad skutkami podawania L-karnityny autystom.

Jedno z centrów uniwersyteckich stosuje leczenie pacjentów cierpiących na choroby mitochondrialne kombinacją koenzymu O10, witaminy E i witamin z grupy B (186). Koenzym Q10 również podawany oddzielne to ciekawa interwencja w autyzmie. Wzmaga produkcję ATP przenosząc elektrony i protony w łańcuchu elektronowym i chroni mitochondria przed oksydantami (287). Witamina B3 jest niezbędna do produkcji energii przez mitochondria i skuteczna w leczeniu schizofrenii (288) ale nie poświęca się jej wiele uwagi w autyzmie.

Kliniczne znaczenie podatności enzymów, receptorów, protein G i witamin na stres oksydacyjny jest niezbadane (tabela 8). Glukoza-6-fosfatodehydrogenaza (G-6-PD), która odgrywa ważną rolę w redukcji GSH, jest tylko jedną z wielu podatnych na oksydację substancji, istotną dla autystów.

Tabela 8. Podatność na degenerację oksydacyjną lub spowodowaną przez azot

Enzym albo czynnik                                                 Pozycja w bibliografii

Dekarboksylaza glutaminowa                         (142)

Transportery glutaminianu                                         (144)

Syntetaza glutaminianowi                                          (143), (227)

Kanały GABA                                                                    (289)

Witamery B6                                                              (184-186)

Pirydoksylkinaza                                                        (174)

Enzymy zależne od B6                                               (290)

Tetrahydrofolate                                                        (241), (244)

Syntaza metioninowa                                                 (291)

Witamery B12                                                              (237-241)

Glukoza-6-fosfatodehydrogenaza (G-6-PD)              (292)

Koenzym A                                                                (78)

Alfa-KGDHC                                                            (31), (250-251)

Na,K-ATPaza, kanały wapniowe, akwaporyna         (207)(227)

Katalaza                                                                               (293)

Peroksydaza glutationowa                                                (182)

Podsumowanie

Dane wykazują istnienie dużego stresu oksydacyjnego w autyzmie. Obserwacje kliniczne reakcji na antyoksydanty sugerują, że stres oksydacyjny jest ważny w ekspresji objawów autystycznych. Powstaje pytanie, czy jest on bardzo istotny z punktu widzenia jego mechanizmu.

Próby podawania antyoksydantów z mierzeniem biomarkerów oksydacyjnych, mogą pomóc w naświetleniu kwestii istotności mechanizmu oksydacyjnego. Podczas oczekiwania na wyniki tych badań, lekarze i rodzice podają dzieciom bezpieczne dawki składników odżywczych – lepiej wcześniej niż później. Byłoby przydatnym określanie wysokości tych dawek na podstawie laboratoryjnych wyników stresu oksydacyjnego.

Wstępne dane o lipofuscynie są bardzo ważne i powinno się jak najszybciej wykonać dalsze badania w tym kierunku. Analiza lipofuscyn może doprowadzić do ustalenia specyficznej toksyny albo etiologii infekcji. Jest to przynajmniej silna wskazówka, że neurodegeneracja w autyzmie może być zmieniona przez wpływ oksydacyjny.
W tym kontekście przewlekły niedobór witaminy E u dzieci może pomóc nam zrozumieć potencjalne efekty nadmiernego stresu oksydacyjnego na rozwój. Niedobór witaminy E to zaburzenie neurologiczne, które jest skutkiem słabej ochrony antyoksydacyjnej od urodzenia (294, 295). Występuje odkładanie się lipofuscyn (294, 296) i objawy neurologiczne – zaburzenia chodu, dziwne ruchy gałek ocznych – w wieku 18-24 miesięcy (294) podobnie jak przy regresie autystycznym.

Poza tym analogiami, witamina E ma konkretne przełożenie na funkcjonowanie autystów i zdrowych dzieci. Neurologiczne komplikacje niedoboru witaminy E istnieją u pacjentów z niedoborami immunologicznymi i enteropatią, pacjentom tym zaleca się monitorowanie poziomu witaminy E (297). Profil immunologiczny w autyzmie przypomina niedobory immunologiczne (296) i poza dyskusją pozostaje kwestia enteropatii. Wstępne dane sugerują niższe poziomy witaminy E w osoczu u dzieci z autyzmem (26). Potrzeba więcej danych na ten temat łącznie z badaniem funkcjonalnego poziomu przez hemolizę czerwonej krwinki.

Co optymistyczne, uszkodzenia oksydacyjne są przynajmniej częściowo odwracalne. Dezaktywacja enzymów jest odwrócona przez podanie wystarczających dawek antyoksydantów (174). Nawet elementy strukturalne jak cytoszkielet mogą zostać odnowione przez GSH (299).

Jeśli nauczymy się, że stres oksydacyjny to ważny mechanizm w autyzmie, wówczas nasze poszukiwanie podłoża genetycznego i środowiskowego będzie bardziej ukierunkowane. Z analizy uszkodzeń oksydacyjnych nasza nauka będzie mogła szybciej określić przyczyny, leczenie i sposoby prewencji autyzmu.

Wywiad z Andrew Cutlerem przeprowadzony przez Marka Schauss

Nagrany we wrześniu 2008 roku

http://labinterpretation.com/content/track01-mark-schauss-andrew-cutler

Prawa autorskie do wywiadu posiada Mark Schauss

Schauss: Witam w programie Laboratory Medical Update. Nazywam się Dr. Mark Schauss, w studio jest dzisiaj ze mną Dr. Andrew Cutler. Dr. Cutler ukończył studia w zakresie fizyki na University of California i uzyskał doktorat z chemii na Princeton University. Jest właścicielem licznych patentów i profesjonalnym inżynierem. Jego obszar badawczy obejmował wszystko od alternatywnych źródeł energii do technologii kosmicznej, zanim zajął się kwestią zdrowia. Napisał dwie książki: „Amalgam Illness: Diagnosis and Treatment” oraz “Hair Test

Interpretation: Finding Hidden Toxicities”, które można nabyć przez www.noamalgam.com albo przez Amazon. Witam pana, doktorze Cutler!

Cutler: Cześć. Dziękuję.

Schauss: OK, zaczynamy. Doktorze Cutler, kwestia związku albo jego braku między tiomersalem w szczepionkach a autyzmem przykuwa ostatnio uwagę mediów. Autorzy licznych publikacji twierdzą, że nie ma takiego związku. Czy skomentuje to pan?

Cutler: Wiele innych publikacji potwierdza ten związek. Najświeższy przykład to praca DeSoto i Hitlan w Journal of Child Neurology, listopad 2007, ukazująca, że dane dotyczące poziomu rtęci we krwi i objawów autystycznych jasno potwierdzają, że rtęć powoduje autyzm. Ponadto medycyna stała się w zasadzie sztuką wyzwoloną i gdy zajrzy się na takie miejsca jak strona internetowa University of Washington Medical School można się zorientować, że lekarze nie chcą być technikami. Chcą być przedstawicielami sztuk wyzwolonych. Prowadzi to do sytuacji, że badacze naukowi są niezdolni do prowadzenia badań nad niebezpiecznymi chemikaliami i ich wpływem na ludzi. Nie jest to coś, co potrafiłby przedstawiciel sztuk wyzwolonych. Nie oczekujemy od niego właściwego zastosowania i zrozumienia statystyki. A zatem, jeżeli naprawdę wczytać się w wiele z tych badań, streszczenia i wnioski po prostu nie odpowiadają danym.

 

Schauss: Inne ważne pytanie brzmi: jak może istnieć tyle artykułów potwierdzających zupełnie przeciwne wnioski w tym temacie?

 

Cutler: Tak naprawdę wyjaśnienie jest bardzo proste. Pracę badawczą wykonujesz tylko wówczas, jeśli wiesz co robisz. Większość lekarzy nie ma takich doświadczeń. Potrzebny jest do tego doktorat. Gdy przygotowywałem swoją dysertację, tak samo jak większość kolegów powtarzałem eksperymenty po dziesięć razy, aby ustalić, co zrobiłem nie tak przez pierwsze dziewięć razy i modliłem się, aby za dziesiątym razem wyszło! Najogólniej mówiąc, jeśli chodzi o temat badań na ludziach, to z powodów etycznych masz dostęp tylko do strzępków informacji i jest bardzo łatwo uzyskać dane, które wydają się w porządku, ale jeśli się przez nie przegryziesz, okaże się że nie odzwierciedlają rzeczywistości – wystąpił jakiś błąd systemowy. A potem ludzie biorą te dane, które mogą ale nie muszą cokolwiek znaczyć i stosują wobec nich narzędzia statystyczne. Ale te narzędzia stosuje się tylko wobec losowych błędów, do różnych pomiarów, do rozmiaru grupy kontrolnej. Nie pomogą na błędy systemowe takie jak „czy podmioty pochodziły z właściwej grupy?”, „czy miałeś może pecha, bo ludzie których wybrałeś, byli atypowymi przykładami populacji kontrolnej?” – itp. A potem pojawia się problem sztuk wyzwolonych. Artykuł, o którym wspomniałem (DeSoto) pochodził od jakichś psychologów, którzy akurat znali się na statystyce i przeczytali oryginalny artykuł Ip, Wonga i innych z 2004 roku, którzy twierdzili, że udowodnili, iż rtęć nie powoduje autyzmu. W rzeczywistości niewłaściwie zebrali dane, źle wyliczyli statystykę z tych danych i uzyskali błędne liczby. A psychologowie byli na tyle skrupulatni, że przeliczyli te liczby i uświadomili sobie, że w tym artykule nie ma racji – wnioski nie pochodziły od zebranych danych – i skontaktowali się z autorami artykułu. Nie chcę, aby ktoś pomyślał, że krytykuję Ip i Wonga bo – w przeciwieństwie do wielu innych badaczy, z którymi się kontaktowałem i którzy mówili „och, opublikowaliśmy to i już, idź skocz z mostu” – oni powiedzieli „oczywiście, przekażemy swoje dane każdemu, kto zechce zweryfikować nasze badania”. A DeSoto i Hitlan stwierdzili, że do sprawozdania z badań wkradły się literówki. Przeliczyli to ponownie i przedyskutowali, co oznaczały poprzednie i aktualne wyniki. I w efekcie szeroko cytowany artykuł, który miał pokazać że rtęć nie powoduje autyzmu, tak naprawdę pokazał, że rtęć powoduje autyzm – tylko ludzie niedokładnie go czytali!

Mamy zatem gromadę ludzi, którzy bawią się w “ślepca i słonia” i agencje to finansujące, które mają swoje interesy, niekoniecznie związane z medycyną. Jeśli chodzi o medycynę, mamy Narodowy Instytut Zdrowia (NHI), Centrum Chorób Zakaźnych (CDC) i agencję dopuszczającą do obrotu leki (FDA), dla których – gdyby się okazało, że tiomersal spowodował autyzm – byłby to wielki polityczny cios. Oni zatem płacą ludziom, którzy dochodzą do przeciwnych wniosków. Odbiorcy grantów w różnych obszarach – było tak, gdy ja sam pracowałem na kontrakty – wiedzą, co mają udowodnić. Nie jest to czymś dziwnym w medycynie. Większość z nich udowadnia to, co mają udowodnić. Czasami dane wspierają te wnioski, a czasami nie. W większości przypadków, wysoka na metr sterta artykułów, które dowodzą czemuś przeciwnemu, zostaje streszczona do strony czy dwóch w podręczniku, a kontrowersje wymierają w następnym pokoleniu. W międzyczasie trzeba czytać artykuły w całości, a nie ich streszczenia, a także porównywać je z własnym doświadczeniem a także z doświadczeniami pochodzącymi z wiarygodnych źródeł, od osób, w których artykułach jest dokładnie to, czego sami doświadczyli, aby móc samemu zdecydować, która z tych stert artykułów zasługuje na większe uznanie. A czytanie artykułów medycznych to sztuka. Potrzeba wiele doświadczenia technicznego, aby naprawdę wczytać się w część zawierającą opis eksperymentu i zrozumieć „czy to wynika jedno z drugiego?”, „czy tak się mogło naprawdę zdarzyć?”, „czy nie lepiej po prostu zignorować ten artykuł?” – jeśli nie można domyślić się, co tak naprawdę zrobiono. I w tym kontekście lekarze powinni robić to, za co są najbardziej krytykowani – polegać na dowodach anegdotycznych. Dowody anegdotyczne to podstawa całej nauki, bo jest to obserwacja. „To widziałem”. To tak jak dowód przed sądem: „Ja to widziałem” kontra „ktoś powiedział mi, co widział”.

Z tego wynika, że prawdopodobnie zobaczymy kolejny metrowy stos artykułów polemizujących z tym, czy tiomersal powoduje autyzm czy nie, podczas gdy aktualnie istnieją wszelkie dowody na to, że powoduje. To typowe dla historii nauki i medycyny: wiele czasu wymaga, aby zakończyć debatę.

Schauss: Zatrucie rtęcią wydaje się być w centrum pańskich badań i publikacji. Dlaczego rtęć, doktorze Cutler?

Cutler: Ludzie mogą zostać zatruci na różny sposób. I wszystkie rodzaje zatruć znajdują się wśród klinicznych przypadków, z którymi lekarze mają do czynienia. Z powodu unikalnych własności rtęci, jej przydatności do celów medycznych i technologicznych i braku zrozumienia indywidualnych odmienności biochemicznych – zatrucie rtęcią jest bardzo prawdopodobne. Ponadto z powodu tego, co można określić jako nieracjonalny, niezgodny z nauką dogmat praktyki medycznej, ludzie zatruci rtęcią zwykle nie są diagnozowani wystarczająco wcześnie, więc ich stan się pogarsza zanim trafią do lekarza, który właściwie ich zdiagnozuje. Nadto, ze wszystkich metali rtęć ma najbardziej różnorodne efekty kliniczne, zależne od biochemii konkretnej osoby. To znacznie utrudnia diagnozę, jak również leczenie, gdyż wymaga zastosowania licznych interwencji w celu pomocy zatrutemu pacjentowi. Inne powszechne toksyny to ołów i arszenik; niezbyt powszechne to bizmut, beryl, tal i platyna. Lekarz długo praktykujący zetknie się z nimi wszystkimi. Toksyny, które powodują wiele zamieszania to antymon i aluminium, które są zwykle podwyższone u osób zatrutych rtęcią ale rzadko stanowią podstawową przyczynę zatrucia i organizm oczyszcza się z nich, gdy wydalona zostanie rtęć.

 

Schauss: W pana książce, Hair Test Interpretation: Finding Hidden Toxicities, którą wszyscy nasi słuchacze powinni nabyć na www.noamalgam.com, mówił pan o metodologii opartej na statystyce, która pomoże zinterpretować badanie włosa wykonane w Doctor’s Data, nazywając to regułami obliczeniowymi (“the counting rules”). Moje pytanie brzmi: po co potrzebne są te reguły, czym one są, jak działają i co mogą nam powiedzieć?

 

Cutler: Rtęć jest wyjątkowa spośród innych pierwiastków toksycznych, gdyż powoduje zaburzenia transportu wszystkich minerałów przez membrany komórkowe. To oznacza, że jest wiele osób zatrutych rtęcią, u których poziom rtęci we włosach, krwi czy moczu będzie normalny albo niski. Nie można zbadać tylko poziomu rtęci i określić, czy ktoś jest zatruty czy nie. Gdyby to było takie łatwe, lekarze pierwszego kontaktu mogliby to zbadać i leczyć. Reguły obliczeniowe  to sposób określenia zaburzeń transportu charakterystycznych dla zatrucia rtęcią. Składają się z kilku prostych reguł do obliczenia wyniku w zależności od tego, gdzie znajdują się podziałki na wyniku badania włosa. Na przykład na teście Doctor’s Data Hair Elements, jeżeli pięć lub mniej podziałek w dziale “essential elements” jest po prawej stronie, to wskazuje na duże prawdopodobieństwo zaburzeń gospodarki minerałami. Tak samo jest, jeżeli cztery albo więcej podziałki są na czerwonym polu. Najtrudniejsze jest policzenie, czy jedenaście albo mniej podziałek jest na białych i zielonych polach w środku, zawsze muszę to dokładnie policzyć zamiast szacować wzrokiem. Jak to wszystko liczyć, jest krok po kroku opisane wraz z przykładami w mojej książce o interpretacji badań włosa. (Możecie przeczytać o niej na www.noamalgam.com/hairtestbook.html.) Kiedy gospodarka minerałami jest zaburzona z powodu zatrucia rtęcią, poziomy innych pierwiastków same w sobie nic nie znaczą, chociaż niskie stężenia mają pewne znaczenie. Dlatego osoby zatrute rtęcią często są niewłaściwie diagnozowane z powodu naiwnej interpretacji wyników badań włosa. Jeżeli wystarczyłoby wyłącznie spojrzeć na to co jest “wysoko” i “nisko”, nie trzeba by było mieć dyplomu lekarza, bo każdy mógłby to zrobić. Kiedy gospodarka minerałami jest prawidłowa, wartości danych pierwiastków coś znaczą i trzeba zwracać uwagę na podwyższone wartości wszystkiego, co może być toksyczne. Książka opisuje też, jak poradzić sobie, gdy wyniki testu są niejasne. Jest w niej dokładny opis, jak poszczególne minerały wpływają na organizm i co oznaczają wyniki badań. Na przykład, cynk i wapń we włosie wzrastają, kiedy jest ich niedobór. W książce znajduje się też opis objawów nadmiaru i niedoboru oraz toksyczności wszystkich badanych pierwiastków.

Testy laboratoryjne to nie jest jakiś magiczny sposób na dotarcie do prawdy ostatecznej. Dodają po prostu pewne informacje do tego, co lekarz ustali w drodze wywiadu, badania i obrazu klinicznego. Jako, że zatrucie rtęcią jest łatwo mylone z innymi problemami z powodu specyficznego obrazu klinicznego, badanie włosa jest bardzo pomocne. Inne toksyny mogą być podobne. Na przykład osoby zatrute miedzią i rtęcią mają podobne objawy i na przykład kobiety z objawami napięcia przedmiesiączkowego mogą być zatrute miedzią albo też rtęcią. Badanie włosa odróżni zatrucie rtęcią od zatrucia miedzią i od zatrucia rtęcią i miedzią, a wszystkie te zatrucia inaczej się leczy. Jako, iż określa się w nim poziom 39 pierwiastków, badanie włosa to doskonałe narzędzie. Pozwala szybko wykluczyć diagnozy w sytuacji, kiedy jest jasne, że istnieje problem zatrucia, a potrwałoby wiele godzin wykluczenie innych diagnoz w drodze badania klinicznego.

Jedną z takich sytuacji, gdzie istotne jest wykluczenie innych chorób jest sytuacja, gdy objawy występują nagle, są bardzo różnorodne, czasem są następstwem nagłych zdarzeń, jak np. wypadek samochodowy. Niektórzy pacjenci mają powypadkowe uszkodzenia ciała. Inni są zatruci w stopniu, który był niezauważalny kliniczne aż doszło do stresu wywołanego wypadkiem.

Inną sytuacją jest taka, kiedy pacjent nie może dobrze opisać ani przypomnieć sobie objawów z powodu choroby psychicznej czy zaburzeń rozwojowych.

Ważne jest, aby pamiętać o tym, co oznacza „norma” w testach laboratoryjnych: przy każdym wskaźniku jedna osoba na 20 ma wynik wysoki albo niski. Dlatego interpretując wynik badań włosa, gdzie występuje 39 analizowanych wartości, potrzeba statystycznego podejścia i reguł obliczeniowych aby uniknąć leczenia stanu, który dla danej jednostki jest czymś normalnym.

Schauss: Rozumiem, że często stwierdza Pan, iż testy prowokacyjne z moczu, które mają zbadać obciążenie metalami ciężkimi, są nieprzydatne i nie powinny być rutynowo stosowane. Dlaczego?

Cutler: Stosujemy je z powodów, które nie mają żadnej wartości diagnostycznej. Nikt nigdy nie czyta literatury na temat testów prowokacyjnych, ludzie czytają tylko streszczenia w PubMed. Gdyby naprawdę zapoznali się z literaturą, dostrzegliby tuziny osób, które były całkowicie zdrowe a miały bardzo wysokie wyniki w porównaniu do jakichkolwiek innych wyników obserwowanych w gabinetach lekarzy medycyny alternatywnej. Jeśli wykona się test prowokacyjny u zdrowej osoby i u osoby zatrutej, wyniki są nie do odróżnienia; nie można stwierdzić na podstawie tego, że „wszystko ponad dany wynik oznacza zatrucie, a wszystko poniżej – brak zatrucia”. Poza nieprzydatnością diagnostyczną testy prowokacyjne charakteryzują się znacznym ryzykiem. Nie ma żadnych podstaw, aby akceptować takie ryzyko i nie otrzymać w zamian żadnych informacji. A zatem jedynym powodem stosowania takich testów jest według mnie sytuacji, kiedy firmy ubezpieczeniowe opłacą leczenie tylko, gdy przeprowadzony zostanie test prowokacyjny. Nie jest on przydatny diagnostycznie. Obarczony jest ryzykiem. Jest wiele innych sposobów na zdobycie przydatnych informacji.

Schauss: W swojej książce “Amalgam Illness”, którą szczerze polecam, pokazuje Pan protokół usuwania rtęci, wobec którego jest Pan bardzo zasadniczy. Postuluje Pan niskie dawki kwasu alfa-liponowego i doustnego DMSA podawane co cztery godziny. Inni mówią, że schemat podawania co osiem godzin jest łatwiejszy i równie skuteczny. Dlaczego Pana protokół jest lepszy od innych?

Cutler: Ponieważ mój sprawia, że ludzie czują się lepiej, a inne sprawiają, że ludzie często czują się okropnie i nieodwracalnie gorzej. Jest oparty na fundamentalnych prawach natury, które rządzą substancjami chemicznymi używanymi przez ludzi. Nie jest oparty na tym, jak duże mamy za sobą doświadczenie zawodowe. W zasadzie najprostszy protokół chelatacji jest opisany na tylnej stronie mojej książki o interpretacji włosa. „Amalgam Illness” dotyczy milionów innych symptomów, których nie ma w „Hair Interpretation”. Książka o badaniach włosa to – w uproszczonym opisie – chelatacja, parę innych informacji, wiele przykładów badań włosa. Kwas alfa-liponowy jest najsilniejszym dostępnym chelatorem. Nie jest dobrze opisany w literaturze anglojęzycznej, a umiejętność czytania po rosyjsku wymaga pewnej wiedzy chemicznej. Kinetyka kwasu ALA, DMSA, DMPS jest doskonale zbadana w organizmach ludzkich (przy DMSA również u dzieci). Jeśli spojrzycie na jakąkolwiek standardową książkę o medycynie (Goodman and Gilman’s The

Pharmacological Basis of Therapeutics; or Harrison’s [Principles] of Internal

Medicine; or Goetz’ Textbook of [Clinical] Neurology), będzie tam opisane, jak często podawać lek. W jaki sposób to określić: należy ustalić, jaki jest jego okres półrozpadu i dawać go według tego okresu. Im większe znaczenie mają fluktuacje w poziomie leku we krwi, tym bardziej trzeba trzymać się schematu. Jeżeli fluktuacje mają mniejsze znaczenie, można zmieniać okres podawania leku według wygody. Podstawowe własności farmakologiczne kwasu alfa-liponowego wymagają, aby był on podawany co trzy lub cztery godziny. Trzeba to robić w ten sposób: taki sposób podawania usuwa rtęć z organów wewnętrznych i centralnego układu nerwowego. Podawanie leku rzadziej często prowadzi do koncentracji rtęci w organach wewnętrznych i centralnym układzie nerwowym.

Jedną z rzeczy niedocenianych w medycynie z powodu braku badań technicznych i ilościowych (na korzyść sztuk wyzwolonych, tak by wyuczyć uprzejmych lekarzy) to umiejętność analizy masowej i oszacowania, gdzie znajduje się rtęć (albo ołów albo cokolwiek innego) u osoby zatrutej. W zasadzie gdy pacjent jest zatruty rtęcią, rtęć znajduje się w całym jego ciele, a większość organów jest bardzo podatna na działanie rtęci. A zatem występuje sytuacja, w której ktoś może mieć w sobie 5 albo 10 miligramów rtęci i tylko 100 mikrogramów we wrażliwej części mózgu. Jeśli podasz temu pacjentowi ALA, DMSA czy DMPS według nieprawidłowego schematu (na przykład kwas ALA czy DMSA trzy razy dziennie czy DMPS dożylnie raz w miesiącu czy co drugi dzień), zwiększysz jego wydalanie z tkanki łącznej, przestrzeni międzykomórkowej czy mięśni, ale doprowadzisz do koncentracji w mózgu czy wątrobie. A zatem pacjent, poprzez taki transport rtęci będzie bardziej chory niż wcześniej, pomimo że wydali pewną część rtęci. Aby zapobiec tej redystrybucji, należy podawać chelatory według okresu półrozpadu albo częściej. Dla ALA jest to trzy lub cztery godziny, dla DMSA są to cztery godziny. Dla DMPS jest to osiem godzin. Te kwestie różnią się indywidualnie, zawsze znajdzie się ktoś, u którego ten okres będzie krótszy i u nich sprawdzi się częstsze podawanie – jeśli będzie mniej częste, może im się pogorszyć.

Wielu lekarzy, którzy zalecają podawanie chelatora co 8 godzin albo trzy razy dziennie czynią to raczej dla wygody lekarza a nie pacjenta, bo lekarze, którzy nie do końca rozumieją dlaczego trzeba podawać inaczej albo którzy nie mają w sobie uprzejmości, muszą wykłócać się z pacjentem o to, że „tak, trzeba też wstawać w nocy”. A to kosztuje, bo nie mogą policzyć sobie ekstra wynagrodzenia za czas spędzony na kłótniach z ludźmi. Ale tak naprawdę, jeśli lekarz dobrze to zrozumie, nie jest to problemem. Lekarze, z którymi współpracuję, mówią zwykle coś takiego: „czy wstaje Pan w nocy to toalety?”, ludzie odpowiadają: „Tak” i wówczas lekarze mówią: „cóż, więc do wzięcia leku też trzeba będzie się obudzić, ale nie trzeba będzie wstawać ani nawet siadać, tylko przygotować sobie tabletkę i szklankę wody na stoliku, połknąć tabletkę, obrócić się na drugi bok – to żaden kłopot.” Ludzie będą tak robić.

 

To, czego nie można zmienić i jest podyktowane prawami natury, to częstotliwość podawania chelatora. Jest to konkretna liczba dla każdego chelatora i nie ma sposobu na zmianę tej liczby. Jeśli usłyszycie, że ktoś twierdzi, iż dla tych chelatorów okresy półrozpadu są inne, zignorujcie wszystko co ci ludzie mówią – są tak niezorientowani, że nie wiedzą nawet co oznacza „okres półrozpadu”! To fundamentalne prawo natury określa, jaki jest okres półrozpadu dla ssaków.

 

To, co można zmienić to: rodzaj użytego chelatora, wielkość dawki, jak często go używasz w sensie długości trwania cyklu. Empirycznie ustalono, że ludziom poprawia się przy cyklach trzydniowych i dłuższych. W teorii można zacząć rano, brać dawki do wieczora, przestać na noc i zacząć od nowa – osoby które rak robią, stają się jeszcze bardziej chore. Osoby, które biorą poranną dawkę, biorą je przez cały czas aż do wieczora dnia trzeciego – czują się lepiej. Długość cykli i okresu przerwy między nimi to kwestia empiryczna, zależna od tolerancji danej osoby. Dlatego mówię, aby przeprowadzać to w cyklach (brać przez kilka dni, potem przerwać itd.) gdyż niemal całe doświadczenie z chelatacją na tym się opiera i nie sądzę, aby było sensownym zmieniać wszystko, jako że nie ma zbyt wiele doświadczenia z ciągłą chelatacją. W niektórych przypadkach, gdy ludzie czują się dużo lepiej na chelatacji i powstrzymuje ona pewne uciążliwe objawy, nie było problemu z ciągłą chelatacją. Ale nie jest to powszechnie polecane przez literaturę i w praktyce klinicznej i nie polecam takiego rutynowego działania.

Jak mówiłem, ALA oczyszcza mózg i organy wewnętrzne. DMPS ma dostęp tylko do przestrzeni międzykomórkowej. Nie wyprowadzi rtęci z mózgu. Może przynieść ulgę na wiele sposobów, bo wiele objawów spowodowane jest przez rtęć w reszcie organizmu u średnio zatrutej osoby. Ale dla pełnej, całkowitej ulgi musisz użyć ALA. Jest to najskuteczniejszy chelator – używanie DMPS czy DMSA nie jest niezbędne, choć bardzo pomocne.

Jeśli jesteś zatruty innym niż rtęć metalem, trzeba dobrać właściwy chelator. Może zauważyliście, że nie wspomniałem o najpopularniejszym chelatorze, EDTA. Jest tak dlatego, że nie pomaga on na zatrucie rtęcią, a często szkodzi. Dla innych zastosowań jest przydatny, pomaga na miażdżycę naczyń krwionośnych, ale jeśli ktoś ma problem z rtęcią, nie należy stosować EDTA. Jeśli ktoś jest zatruty ołowiem, najlepiej użyć DMSA, bo DMPS nie odtruwa z ołowiu. Ale DMPS jest za to pomocny w przypadku każdego innego zatrucia. Daje najmniej skutków ubocznych. Jest wygodny, bo bierze się go co osiem godzin. Ważne jest, aby pamiętać okres dawkowania zgodny z prawami natury – co osiem godzin nie oznacza trzy razy dziennie, trzeba te okresy odmierzać zegarkiem. Co trzy godziny nie znaczy osiem razy dziennie, co cztery godziny to nie sześć razy dziennie, trzeba obliczać ten czas według zegarków.

Schauss: Słyszymy, że opisuje Pan raczej doustne chelatory, dlaczego nie dożylne?

Cutler: [wzdycha] Z dwóch bardzo dobrych powodów, pierwszy to taki, że absorpcja wszystkich tych chelatorów przez podawanie doustne jest bardzo dobra i nie ma powodu, aby je wstrzykiwać. Drugi powód jest w zasadzie bardzo interesujący, gdyż dlatego podaje się je często, aby zapobiec zbyt wysokim i niskim koncentracjom we krwi. Kiedy podajesz chelator doustnie, wchłania się on w ciągu godziny czy dwóch i to przesuwa w czasie szczyt absorpcji i przedłuża efektywny okres półrozpadu (kontra teoretyczny okres półrozpadu). A jeśli je wstrzykniesz, bardzo wysoka koncentracja chelatora we krwi będzie miała miejsce tuż po wstrzyknięciu, a potem nagle opadnie on i – o ile nie chcesz zastrzyków co trzy, cztery, sześć czy osiem godzin, czego chyba nikt by nie chciał – nie będziesz podawać chelatora dostatecznie często. A zatem ja wolę podawać je doustnie (albo przezskórnie, chociaż przez to może być więcej efektów ubocznych) zamiast dożylnie. I nawet ludzie z problemami trawiennymi radzą sobie bardzo dobrze przy podawaniu doustnym.

Schauss: Na koniec proszę powiedzieć, jakie inne badania są pomocne przy leczeniu osób zatrutych?

Cutler: Poza innymi testami właściwymi dla danego przypadku, pomocna jest według mnie morfologia krwi z rozmazem. Dość częste są problemy z anemią spowodowaną niedoborem żelaza albo niewłaściwą metylacją, czasem są inne problemy, bywa też neutropenia. Badanie poziomu ferrytyny jest dość użyteczne. Sugeruję osobom, które skarżą się na jakikolwiek rodzaj bólu, letargi, brak motywacji lub popędu, aby zbadały poziom testosteronu. Trzeba go porównać do norm właściwych dla wieku, a nie do norm laboratoryjnych, które są dobre dla 85-latków. U kobiet, prawie zawsze są problemy hormonalne i niezbędny jest panel hormonów płciowych. Cokolwiek, co pozwoli na wyrównanie poziomu hormonów sprawi, że poczują się znacznie lepiej. Bardzo często pacjenci mają problemy z tarczycą, więc pomocne są badania ft3/ft4/TSH. Jeśli wolą, mogą zrobić T3/T4/TSH. Badanie kwasu mocznikowego w osoczu jest bardzo pomocne. Jest obniżony przy zatruciu większością metali ciężkich, a podwyższony przy zatruciu ołowiem. Więc u osoby zatrutej rtęcią, poziom tego kwasu będzie zwykle poniżej 4 [mg/dL]; poczują się lepiej, jeśli podasz im dużo molibdenu. Jeśli są zatruci rtęcią, wynik będzie ponad 6 – może nie być bardzo wysoki, ale wtedy nie trzeba podawać molibdenu, tylko należy podejrzewać zatrucie ołowiem i podawać DMSA.

Inne badania rzadko są użyteczne i raczej odradzam je pacjentom, ale kierując się zaszłościami historycznymi, lekarze często je przepisują. Badanie musi być powiązane z różnymi objawami. Z mojego doświadczenia wynika, że lekarze – mając realistyczny pogląd na temat miałkości swoich umiejętności klinicznych – w dużej mierze polegają na badaniach laboratoryjnych, bo nie wiedzą jak często laboratoria mogą się pomylić i jak mało te wyniki mogą znaczyć [śmieje się]… Ja poświęcam wiele czasu na zachęcanie lekarzy, aby polegali na swoich umiejętnościach badania klinicznego i gdy zobaczą jakiś objaw, który zaprzecza wynikom badań, aby uwierzyli w to, co widzą (poza badaniem włosa, które jest według mnie doskonałe na początek – wspaniałe narzędzie diagnostyczne – pamiętajcie że nie można badać farbowanych włosów lub włosów po trwałej -  osoby z długimi włosami muszą obciąć je przy samej skórze – możesz wykorzystać inne włosy na ciele jeśli nie są farbowane i trzeba pamiętać tylko, aby uwzględnić kiedy urosły; możesz wykorzystać włosy łonowe – wyniki będą wiarygodne, widziałem wiele badań na włosach łonowych i wyniki były identyczne jak badanie włosa z głowy. Nie widziałem wystarczająco wiele badań na włosach spod pachy, aby stwierdzić czy wyniki są wiarygodne, ale podejrzewam że tak jest.)

Ale tak naprawdę to bardzo proste – morfologia, badania hormonów tarczycy, poziom kwasu mocznikowego w osoczu i wyżej wymienione hormony. U ludzi chudych i znerwicowanych należy również zbadać hemoglobinę A1c i stwierdzić, czy nie jest za niski jej poziom i czy nie są oni na granicy niewydolności nadnerczy. Ale jeśli pacjent jest chudy, znerwicowany i skupiony na sobie samym – w zasadzie nie trzeba badać, czy wymaga wspomagania nadnerczy.

Schauss: Pomyślałem, że zainteresuje też naszych słuchaczy kwestia rtęci i porfiryn w moczu.

Cutler: To naprawdę interesująca kwestia. Wiem coś na ten temat. Powstała na ten temat fascynująca literatura. A zatem udzielę długiej odpowiedzi, ale zacznę od krótkiej i ją rozwinę.  Krótka odpowiedź brzmi następująco: bardzo ograniczona wartość diagnostyczna z powodu wysokiego stopnia fałszywych wyników negatywnych. A przyczyną tego jest fakt, że w laboratorium prawdziwy „łańcuch analiz” rozpoczyna się, gdy mocz jest jeszcze w kanałach moczowych. Gdy spotka się z powietrzem, tak naprawdę już wówczas zaczynają się badania i od tego momentu aż do ostatecznych wyników, wszystko ma wpływ na rezultaty. Na większość badań z moczu nie ma to większego wpływu. Problem z porfirynami jest taki, że są one bardzo wrażliwe na oksydację przez powietrze i światło, a zatem jeśli oddasz mocz do wiaderka w pokoju ze światłem fluorescencyjnym, to do czasu gdy weźmiesz pojemnik i przelejesz go do pojemnika i włożysz do lodówki – połowa materiału badawczego przepadła! I to jest poza kontrolą laboratorium – oni nie mogą nic z tym zrobić, sprawdzić tego, wiedzieć co się stało. Jeśli dostarczysz mocz do laboratorium i technik wcześniej nie wykonywał tego testu, w instrukcji ma napisane, że mocz musi być dobrze wymieszany. Jeśli potrząśnie pojemnikiem, zamiast go delikatnie poruszyć w przód i w tył – to potrząsanie zniszczy kolejną część materiału badawczego. Jeśli zrobi to w pokoju ze światłem fluorescencyjnym, zniszczy kolejną połowę. A zatem może być osoba, która ma wysoki poziom porfiryn, a u której badania wyjdą w normie i nie jest to wyjątkowa sytuacja. Jest to zatem bardzo dobry test, jeśli masz zawsze świadomość, że wynik w normie – nawet powtórzony – może być błędny i może być fałszywie negatywny – zawsze są testy fałszywie pozytywne i negatywne, ten ma po prostu ogromnie duże prawdopodobieństwo fałszywej negatywności.

Jest badanie Woodsa et al. 5-karboksyporfyriny specyficznej dla rtęci, badanej aktualnie przez Laboratoire Philippe Auguste we Francji – teoretycznie jest to właściwy test, specyficzny dla rtęci,  ale nie jest dla mnie jasne, co oznaczają ich zakresy referencyjne, co budzi kolejne pytania… Jednakże co do zasady laboratoria głównego nurtu zawsze oferowały badania porfiryn w moczu i jeśli przyjrzeć się tym badaniom, choć nie są specyficzne dla rtęci, jeśli podwyższone są koproporfiryny, pacjent ma rzadką porfirię genetyczną, którą łatwo można wykluczyć. Albo jest to porfiria spowodowana zatruciem, jeśli podwyższona jest uroporfiryna i koproporfiryna – to może oznaczać tylko porfirię spowodowaną zatruciem. Są cztery choroby, które można tym testem wykluczyć oraz 30-40 toksyn, większość nich to metale ciężkie. A zatem, jeśli w badaniu wyszła porfiria spowodowana zatruciem, można szybko wykluczyć parę chorób. Problemem jest to, że nie możesz zdiagnozować w pełni niczego za pomocą tego testu, bo często bywa fałszywie negatywny. W Amalgam Illness opisuję, jak zebrać próbkę i jak się z nią obchodzić, jeśli ktoś chce wykonać ten test. Najlepsze by było, gdyby lekarze sami nauczyli się jak to zrobić i uczyli tego pacjentów oraz pisemnie dawali laboratoriom instrukcje, a pacjent sam przygotowywałby próbkę. Nawet wtedy będą wyniki fałszywie negatywne. Nadto jeśli zbadasz poziom porfiryn we krwi, wielu pacjentów – który mają porfirię spowodowaną zatruciem – będą mieli je lekko podwyższone – ale trudno jest zbadać poziom porfiryn we krwi, nie jest to powszechnie dostępny test. Jeśli martwisz się genetyczną porfirią, należy pamiętać że: w porfiriach genetycznych wynik zwiększony jest około 10 razy powyżej normalnych limitów albo i więcej. Typowo, u chorych występują objawy jako pewne epizody, a poza nimi czują się dobrze. Są dobrze opisane i zbadane czynniki wyzwalające objawy. W porfirii spowodowanej zatruciem, wynik jest podwyższony zwykle 2-4 krotnie i za każdym razem jest taki sam – nie rośnie ani nie maleje. Objawy nie pojawiają się epizodycznie.

Co jest naprawdę interesujące w literaturze… to, o ile dobrze pamiętam, szwajcarskie badanie, które skupiło się na poziomie porfiryn w moczu u dzieci od momentu narodzenia do wieku 18 lat. Wykazano, że przez pierwsze 24 miesiące poziomy porfiryn rosły i malały w powiązaniu z podaniem rtęci w szczepionkach. Badacze stwierdzili, że są to naturalne wariacje związane z rozwojem, ale jest dużo bardziej prawdopodobne, że jest to spowodowane zatruciem poszczepiennym i ma wpływ na całą populację.

A więc, pomimo iż w pewnym sensie jest to użyteczny test, ma pewne ograniczenia kliniczne z powodu dużego prawdopodobieństwa wyników fałszywie negatywnych, które potrafią namieszać w głowie. Lekarze muszą pamiętać – jestem pewien, że większość nich o tym wie – że jak powiedzą pacjentowi: „och, proszę wykonać te badanie, może być wynik w normie ale to nic nie znaczy”, a wynik będzie w normie, pacjent powie „cóż, ten wynik dowodzi, że nie jestem zatruty rtęcią”, nawet jeśli ten wynik kompletnie o tym nie świadczy. A zatem, pomimo że dla lekarzy te badanie może być użyteczne, może osłabić ich zdolność do leczenia pacjenta, który zawsze może powiedzieć: „te inne badania nic nie znaczą, a ja nie jestem tak naprawdę zatruty”. Bo jedyne co powie taki test to to, że pacjent ma jeden z fałszywie negatywnych wyników.

Schauss: Cóż, doktorze Andrew Cutler, dziękuję za to, że podzielił się Pan z nami tymi informacjami i mam nadzieję na współpracę w przyszłości.

Cutler: W porządku. Dziękuję bardzo.

Transkrybowane przez Michaela Rossa, 28 września 2008

Szczepionki zawierające rtęć

SZCZEPIONKI ZAWIERAJĄCE  RTĘĆ (za prof. M. Majewską)‏

 

  • Euvax (Wzw B, Life Sciences, prod. koreańska) – 0,01 % THIM
  • Engerix B (Wzw B, Glaxo) – 0,005% THIM
  • Hepavax – 0,01%
  • D.T.COQ (DTP, Sanofi) – 0,01 % THIM
  • DTP (Biomed, Kraków) – 0,01 % THIM
  • TETRAct-HIB (DTP+Hib) (Sanofi) – 0,01% THIM
  • D – Szczepionka błonicza (Biomed) – 0.01% THIM
  • DT – Szczepionka błoniczo-tężcowa (Biomed) – 0,01% THIM
  • DTP – Szczepionka błoniczo-tężcowo-krztuścowa (Biomed) – 0,01% THIM
  • Szczepionki przeciw grypie (opakowania wielodawkowe) – 0,01 % THIM

 

Wpływ tioli na toksyczność rtęci

Wpływ tioli, dwutioli i wchodzących w interakcje ligand na toksyczność rtęci

James P.K. Rooney

Centre for Synthesis and Chemical Biology, Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland

  1. Wstęp

Toksyczność rtęci jest przedmiotem wzrastającego zainteresowania, jak i pojawiających się kontrowersji w medycynie współczesnej. Chociaż rtęć od setek lat jest znana jako substancja toksyczna, pozostało do wyjaśnienia wiele jeszcze kwestii odnośnie mechanizmów jej wpływu na procesy biochemiczne zachodzące w ciele. Na tle trwającej od dziesięcioleci debaty dotyczącej wykorzystywania rtęci w plombach amalgamatowych, pojawiły się ostatnio kontrowersje w zakresie stosowania zawierającego rtęć środka konserwującego tiomersalu oraz w zakresie ekspozycji na rtęć poprzez konsumpcję ryb. Pojawiły się także spekulacje, czy ekspozycja na metale ciężkie takie jak rtęć może mieć wpływ na etiologię różnych chorób neurodegeneracyjnych, takich jak stwardnienie zanikowe boczne (choroba Lou Gehringa), choroba Alzheimera, stwardnienie rozsiane i choroba Parkinsona (Clarkson 2002; Muter et al., 2004). Nadto coraz więcej zainteresowania poświęca się możliwej roli tiomersalu, zawierającego rtęć w formie etylowanej, w etiologii zaburzeń rozwoju, takich jak autyzm (Geier and Geier 2006, Muter et al. 2004; Parker et al. 2004).

Każda z wyżej wymienionych kwestii odnosi się do przewlekłego zatrucia rtęcią, odnośnie którego zgromadzono bardzo skąpe dane – w tym do ustalenia pozostaje jeszcze maksymalny bezpieczny poziom ekspozycji (Berlin, 2003; Risher and Amler, 2005). Podczas gdy toksykologia kliniczna różnych form ostrego i przewlekłego zatrucia rtęcią została dokładnie opisana w ostatnich pracach (Clarkson, 2002l Clarkson et al. 2003), a przedmiotem innych jest analiza zatrucia rtęcią w aspekcie biologii molekularnej (Bridges and Zalups, 2005; Zalups, 2000), brak jest prac łączących dokonania obydwu tych specjalistycznych kwestii.

Celem tej pracy jest próba odnalezienia takiej zbieżności poprzez rozważenie klinicznych, diagnostycznych i terapeutycznych implikacji wynikających z pogłębionej analizy zatrucia rtęcią w aspekcie biologii molekularnej. Praca skupia się na wpływie tioli, dwutioli i wchodzących w interakcje ligand, takich jak proteiny zawierające cynk i selen, na toksyczność rtęci na poziomie cząsteczkowym (patrz Tabela 1). Zawiera również ocenę wpływu aspektu molekularnego na kliniczną diagnostykę w kierunku zatrucia rtęcią w kontekście przewlekłej długoterminowej ekspozycji na różne formy rtęci i prawdopodobieństwa selektywnej retencji rtęci nieorganicznej w mózgu.

2. Formy rtęci

2.1. Rtęć metaliczna/Hg0

Ekspozycja na rtęć może pochodzić z różnych źródeł, a sama rtęć obecna jest w środowisku w kilkunastu różnych formach. Rtęć metaliczna (Hg0) nie jest dobrze przyswajana w drodze trawienia, ale bardzo dobrze przyswajana jest w drodze inhalacji. Znajduje zastosowanie w termometrach, plombach amalgamatowych oraz kilkunastu innych substancjach używanych w gospodarstwie domowym i przemyśle. Pozostawiona w temperaturze pokojowej rtęć metaliczna przekształca się w opar, który jest doskonale absorbowany przez płuca. Po absorpcji ta forma rtęci jest rozpuszczalna w tłuszczach, ma zdolność przekraczania bariery krew-mózg i łożyska, jak również może uleć – przy udziale nadtlenku wodoru – utlenieniu do formy nieorganicznej (Hg2+), która jest odkładana w mózgu przez wiele lat (Braunwald er al., 2001, Hargreaves et al. 1988, Opitz et al. 1996, Takeuchi et al. 1989, Vahter et al. 1994). Warto zauważyć, że plomby amalgamatowe wydzielają opary rtęci, które są wdychane i absorbowane do układu krwionośnego (Brauwald et al., 2001, Clarkson et. al. 2003).

Tabela 1

Podsumowanie substancji wykorzystywanych w leczeniu zatrucia rtęcią

molekuła Typ Rola w leczeniu zatrucia rtęcią Inne funkcje biologiczne
ZnCynk Minerał Wzmaga produkcję białek wiążących metale, metalotionein, które uważane jest za substancję chroniącą mózg przed ekspozycją na opary rtęci Ma wpływ na syntezę i stabilizację białek, DNA i RNA. Pełni rolę strukturalną w rybosomach i membranach. Reguluje produkcję hormonów sterydowych i białek aktywujących transkrypcję genów. Kluczowy dla produkcji nasienia, umożliwia rozwój w życiu płodowym. Kompetycyjny inhibitor wchłaniania miedzi.
SeSelen Minerał Ma wpływ na dystrybucję i redukcję toksyczności rtęci u zwierząt, jednakże są dowody negatywnych interakcji z dwutiolowymi związkami chelatującymi, jak DMPS i DMSA u zwierząt zatrutych rtęcią W formie selenocysteiny jest składnikiem peroksydazy glutationowej i enzymów dejodynazy. Selen ma wąski indeks terapeutyczny, a jego toksyczna dawka zaczyna się od 400 ug/dzień
NACN-acetyl cysteina Endogeniczny tiol Zwiększa poziom GSH. Niektórzy lekarze wykorzystują ten związek w terapii zatrucia rtęcią, gdyż GSH zwiększa wydalanie rtęci metylowanej z żółcią. Jednakże doświadczalnie udowodniono, że NAC i GSH mają udział w dystrybucji rtęci do mózgu i nerek. Antyoksydant. Dożylna NAC jest odtrutką na przedawkowanie acetaminofenu. W formie wziewnej ma działanie mukolityczne poprzez rozdzielanie dwusiarkowych wiązań w mukoproteinach. Zażywana doustnie chroni przed nefropatią wywołaną przez podanie kontrastu
GSHGlutation Endogeniczny tiol Ma wpływ na wydalanie metyrtęci z żółcią. Uważa się, że międzykomórkowy GSH pełni funkcję ochronną dla komórek. Z drugiej strony są dowody na jego wpływ na absorpcję rtęci nieorganicznej i rtęci metylowanej do nadnerczy Antyoksydant, który działa jako międzykomórkowy neutralizator wolnych rodników. Przy braku enzymu G6PD, brak możliwości regenerowania glutationu w czasie stresu oksydacyjnego prowadzi do rozpadu czerwonych krwinek
ALAKwas alfa-liponowy Endogeniczny dwusiarczek Metabolizowany wewnątrzkomórkowo do DHLA (kwas dihydroliponowy, ditiol). U licznych gatunków ssaków ma działanie chroniące mózg przed zatruciem rtęcią. Istotnym wydaje się rozmiar dawki i ich częstotliwość, niewłaściwe dawkowanie w widoczny sposób zwiększa poziom zatrucia. Ma dostęp do wszystkich tkanek organizmu, łącznie z mózgiem Koenzym w kompleksach enzymów: dehydrogenazy pirogronianowej, dehydrogenazy alfa-ketoglutarowej i dehydrogenazy łańcuchowego alfa-ketokwasu. Zwiększa wewnątrzkomórkowy poziom glutationu. Regeneruje witaminy C i E.
DMPS Syntetyczny ditiol Tworzy mocne wiązania z molekułami rtęci nieorganicznej. Z powodu niskiej masy cząsteczkowej jest łatwo filtrowany przez nerki i wydalany z moczem. Nie chelatuje rtęci z mózgu. Chelatuje inne metale ciężkie, w tym arszenik, ołów i kadm. Chelatuje również minerały takie jak miedź, chrom i cynk. Jest używany w leczeniu choroby Wilsona.
DMSA Syntetyczny ditiol Tworzy mocne wiązania z molekułami rtęci nieorganicznej. Z powodu niskiej masy cząsteczkowej jest łatwo filtrowany przez nerki i wydalany z moczem. Nie chelatuje rtęci z mózgu. Chelatuje inne metale ciężkie, w tym arszenik, ołów i kadm. Chelatuje również minerały takie jak miedź i cynk. Znajduje zastosowanie w medycynie nuklearnej.

2. 2. Rtęć nieorganiczna/Hg2+

Rtęć nieorganiczna znajduje się w licznych produktach kosmetycznych i gospodarstwa domowego (Ozuah, 2000), jak również znajduje zastosowanie w przemyśle. Jest dobrze absorbowana w drodze trawienia i przez skórę. Może przybierać formę metabolitu oparów rtęci metalicznej (przy wchodzeniu do komórki), rtęci metylowanej i etylowanej (Clarkson, 2002). Stosunkowo niewielka ilość rtęci w formie nieorganicznej przekracza barierę krew-mózg, większość zostaje wydalona z moczem lub kałem albo odkłada się w nerkach. Jednakże, rtęć nieorganiczna może przybierać w mózgu formę innych rodzajów rtęci i pozostaje w mózgu przez lata (Takeuchi et al., 1989, Vahter et al. 1994).

2. 3. Rtęć organiczna

Ekspozycja na rtęć organiczną u ludzi zazwyczaj ma miejsce w dwóch formach: rtęć metylowana (CH3Hg+) – z konsumpcji ryb; rtęć etylowana(C2H5Hg+), która jest składnikiem tiomersalu używanego w szczepionkach. Rtęć organiczna może być przedmiotem absorpcji przez płuca, jest również dobrze przyswajana w układzie trawiennym. Tylko niewielkie ilości są absorbowane przez skórę. Bezpieczeństwo tiomersalu jest aktualnie przedmiotem gorącej debaty. Rtęć organiczna bez przeszkód przekracza barierę krew-mózg, łożysko, pojawia się w mleku kobiecym i koncentruje się w nerkach oraz centralnym układzie nerwowym (Braunwald et al., 2001).

Dimetylortęć, (CH3)2Hg, to forma rtęci organicznej spotykana tylko w laboratoriach. Trzeba zauważyć, że jest to bardzo toksyczny związek, który jest w dużej mierze absorbowany przez skórę (nawet rękawiczki lateksowe nie stanowią zabezpieczenia) i łatwo zmienia się w formę oparów. Ekspozycja na ilość odpowiadającą kilku kroplom jest śmiertelna, gdyż prowadzi do degeneracji układu nerwowego (Braunwald et al., 2001, Nierenberg et al., 1998). W roku 1997 dimetylortęć spowodowała śmierć profesora chemii i aktualnie odradza się stosowanie tego związku w laboratoriach, jeżeli możliwe są inne środki (Nierenberg et al., 1998).

3. Eliminacja i biologiczny okres półrozpadu rtęci.

Eliminacja rtęci z ludzkiego ciała zmienia się zależnie od form rtęci, a okres półrozpadu jest zmienny w zależności od organu. Eliminacja rtęci metalicznej ma miejsce przez mocz, kał i wydychane powietrze. Podstawową drogą eliminacji rtęci organicznej jest układ trawienny. Rtęć etylowana jest wydzielana do żółci, ale większość z niej przechodzi cykl enterohepatyczny (Clarkson, 2002).

3.1. Toksykologia i eliminacja rtęci z mózgu

Kwestia toksykologii i eliminacji rtęci z mózgu budzi wiele kontrowersji. Chociaż rtęć nieorganiczna nie ma właściwości pozwalającej na przekraczanie bariery krew-mózg przez dużą ilość tego związku – jej obecność stwierdza się z mózgu zarówno przy zatruciu rtęcią etylowaną, jak i etylowaną (Magos et al., 1985) oraz w przypadkach ekspozycji na opary rtęci związanej z wykonywaniem pracy zawodowej (Nylander et al., 1989; Opitz et al., 1996).

Więcej kontrowersji budzi jednakże kwestia, czy to sama rtęć etylowana, czy raczej rtęć nieorganiczna powstała w wyniku demetylacji rtęci metylowanej mózgu, stanowi bezpośredni czynnik neurotoksyczny w przypadkach zatrucia rtęcią etylowaną. Badania dostarczyły wielu dowodów na korzyść tezy o bezpośredniej toksyczności rtęci metylowanej (Magos et al., 1985). W toku badań poddano szczury działaniu zarówno chlorku rtęci etylowanej (o stężeniu 8.0 i 9.6 mgHg/kg) i chlorku rtęci metylowanej (w stężeniu 8.0 mgHg/kg) drogą gastroskopii. Z drugiej strony, niektóre badania potwierdziły też tezę o bezpośredniej toksyczności rtęci nieorganicznej. Małpom z gatunku Macaca Fascicularis doustnie podano rtęć metylowanej (w stężeniu 50ugHg/kg) (Charleston et al., 1996, 1995; Vahter et al. 1994,1995). Tezę też udowodniono bez żadnych wątpliwości w drodze autopsji osób przewlekle zatrutych rtęcią (Davis et al., 1994; Takeuchi et al., 1989).

Na pierwszy rzut oka badania wydają się prowadzić do sprzecznych wniosków. Ta ewidentna sprzeczność może być wyjaśniona przy użyciu starożytnej maksymy: „Dawka czyni truciznę”. W rezultacie, bezpośrednim toksycznym związkiem w każdym z wyżej opisanych przypadków jest ta forma rtęci, która jako pierwsza odłoży się na poziomie neurotoksycznym. W perspektywie krótkoterminowej, w przypadku podania rtęci metylowanej w dużych dawkach, tak jak w badaniach Magos et al. (1985), bezpośrednim związkiem toksycznym będzie najprawdopodobniej rtęć metylowana, z uwagi na wysokość podanej dawki, która prowadzi do bezpośredniego efektu toksyczności zanim w ogóle może dojść do szerszej demetylacji. Jednakże przy przewlekłej ekspozycji na małe dawki rtęci, jak w badaniach Charleston et al. (1996,1995) i Vahter et al. (1994,1995) bezpośrednim związkiem toksycznym będzie z dużym prawdopodobieństwem rtęć nieorganiczna, z jednej strony z uwagi na długoterminowy proces odkładania się jej w mózgu i wyjątkowo wysoki okres półrozpady i z drugiej strony z uwagi na fakt, iż rtęć metylowana osiąga stabilny stan po roku od ekspozycji i nie kumuluje się dłużej w mózgu, podczas gdy poziomy rtęci nieorganicznej rosły przez cały okres trwania eksperymentu (18 miesięcy).

Trzeba również uwzględnić fakt, iż gdy rtęć nieorganiczna dotrze już do mózgu, jej okres półrozpadu w tym organie jest znacząco dłuższy niż rtęci etylowanej czy metylowanej (Charleston et al., 1996, 1995; Vahter ety al. 1994, 1995). W rezultacie rtęć nieorganiczna ma tendencję do kumulowania się w mózgu przy zatruciu rtęcią metylowaną już po tym, gdy poziom rtęci metylowanej osiągnął stabilny stan (Vahter et al., 1994). Rzeczywiście, wiele badań autopsyjnych przypadków zatrucia oparami rtęci i rtęcią metylowaną doprowadziło do ujawnienia rtęci nieorganicznej w mózgu wiele lat po ustaniu ekspozycji (Davis et al., 1994; Hargreaves et al., 1988; Nylander et al., 1989; Opitz et al., 1996; Takeuchi et al., 1989).

Debata akademicka dotycząca tych zagadnień będzie prawdopodobnie kontynuowana. Niezależnie od tego, uwzględniając istniejące dowody na selektywną retencję rtęci nieorganicznej w mózgu zarówno po doustnej ekspozycji na rtęć metylowaną jak i ekspozycji na opary rtęci oraz uwzględniając fakt, że są to dwie najczęstsze drogi ekspozycji na rtęć w populacji ludzkiej (poprzez konsumpcję ryb i opary rtęci uwalniane z plomb amalgamatowych), jest oczywistym że kumulacja rtęci nieorganicznej w mózgu powstająca z przewlekłej ekspozycji na niskie dawki przez długi okres czasu, niezależnie od pierwotnych form rtęci, na której działanie narażona jest osoba, musi być traktowana jako potencjalne źródło neurotoksyczności u ludzi.

4. Mechanizmy transportu rtęci w ludzkim ciele.

Przynajmniej od wczesnych lat siedemdziesiątych wiadomym jest, że 99% rtęci krążącej w osoczu przyłącza się do grup tiulowych opartych na proteinach i spekulowano, że transport rtęci do poszczególnych organów i jej redystrybucja dotyczy pozostałego 1% rtęci przyłączonej do „zdolnych do dyfuzji tioli” (Clarkson, 1972), czyli np. tioli o niskiej masie cząsteczkowej, które przenikają przez membrany komórek (Lorscheider et al., 1995). W maju 2005 Bridges i Zalups (2005) opublikowali pracę analizującą różne przykłady endogenicznych tioli, które wspomagają transport metali ciężkich. Ich praca skupia się na zjawisku „molekularnego naśladownictwa” i przytacza wiele przykładów, kiedy tiole o niskiej masie cząsteczkowej połączyły się z rtęcią (i innymi ciężkimi metalami) umożliwiły wejście przez rtęć do różnych rodzajów komórek dzięki molekularnemu naśladownictwu. „Molekularne naśladownictwo odnosi się do zjawiska, w którym połączenie się jonów metali do grup nukleofilowych niektórych biomolekuł prowadzi do uformowania kompleksów organiczno-metalicznych, które zachowują się jak strukturalne i/lub funkcjonalne homologi innych endogenicznych biomolekuł albo tych molekuł, do których przyłączyły się jony metali.” (Bridges i Zalups, 2005).

Wydaje się prawdopodobnym, iż rola naśladownictwa molekularnego w transporcie metali ciężkich podsumowana przez Bridgesa i Zalupsa (2005), stanowi istotny dowód kliniczny działania mechanizmów, dzięki którym toksyczne metale ciężkie transportowane są do różnych rodzajów komórek w całym ciele. Warto również dodać, że pozostało jeszcze do odkrycia wiele mechanizmów naśladownictwa molekularnego. W rzeczy samej, Zalups i Ahmad (2005a, b) opublikowali dalsze wyniki badań, które dowodzą, iż N-acetyl-cysteina (NAC) w połączeniu z rtęcią etylowaną i metylowaną oraz homocysteina w połączeniu z rtęcią metylowaną mogą działać jako substraty ludzkich transporterów anionów organicznych-1 (hOAT).

5. Chelatacja

Związki chelatacyjne są stosowane w farmakologicznym leczeniu zatrucia metalami ciężkimi. Chelatory to molekuły, które ściśle wiążą się z metalami obudowując je strukturą pierścienia. Dobry chelator jest toksyczny w niskim stopniu, wiąże się w pierwszej kolejności z metalami ciężkimi o stabilnych stałych stężeniowych i ma wyższy współczynnik wydalania niż endogeniczne związki wiążące metale, w ten sposób faworyzując szybką eliminację metali toksycznych. DMPS i DMSA to związki chelatacyjne oparte na ditiolach, stosowane w leczeniu zatrucia rtęcią. DMPS nie jest aktualnie zatwierdzony przez FDA do użytku klinicznego, chociaż jest stosowany w leczeniu zatrucia rtęcią bez aprobaty FDA (Risher i Amler, 2005). DMSA otrzymał zgodę na stosowanie u dzieci zatrutych ołowiem (Risher i Amler, 2005).

5.1. DMPS (Dimaval, Unithiol) – dimerkaptopropanosulfon

DMPS został zarejestrowany jako lek w Związku Radzieckim w roku 1958, ale stał się dostępny na Zachodzie dopiero w 1978 roku (Aposhian et al., 1995). DMPS jest ditiolem rozpuszczalnym w wodzie. Używa się go w odtruwaniu z arszeniku, ołowiu, rtęci i kadmu, ma również zastosowanie w leczeniu choroby Wilsona (wrodzona wada metabolizmu miedzy, prowadząca do biokumulacji miedzi). DMPS można podać doustnie lub dożylnie. Jest przetwarzany w ludzkim organizmie w acykliczne i cykliczne dwusiarczki (Aposhian et al., 1995). Poprzednio przypuszczano, że DMPS wiąże się z rtęcią w stosunku 1:1, jednak badania przy zastosowaniu spektrometrii rentgenowskiej udowodniły, że taka struktura nie jest możliwa (George et al., 2004). Autorzy ustalili, że konieczne jest zbudowanie bardziej kompleksowej struktury z wykorzystaniem przynajmniej dwóch molekuł DMPS i dwóch atomów rtęci. DMPS nie jest skuteczne w usuwaniu rtęci z mózgu (Aposhian et al., 2003; Bucht and Lauwerys, 1989; George et al., 2004). DMPS chelatuje również minerały – miedź, chrom i cynk (Risher i Amler, 2005).

5.2. DMSA (Succimer, Chemet, Captomer) – kwas 2,3-dimerkatobursztynowy

DMSA, podawane doustnie, jest gwałtownie jednak nie w całości przyswajane. Znajduje zastosowanie w chelatacji ołowiu, arszeniku, kadmu, rtęci i innych metali. Jest gwałtownie i w dużym zakresie metabolizowane i wydalane głównie z moczem, a w małej ilości z żółcią i przez płuca. Ponad 95% DMSA w krwi wiąże się z białkami (głównie z albuminą) i ponad 90% DMSA wydalanego z moczem przybiera formę dwusiarczku z L-cysteiną (Aposhian et al. 1995). Podobnie jak w przypadku DMPS, w przeszłości prezentowano pogląd, że DMSA wiąże się z rtęcią w stosunku 1:1. Jednakże George etal. (2004) również i w tym przypadku odkryli, że taka struktura nie jest możliwa. Stwierdzili, że DMSA formuje zwykle binuklearny kompleks Hg2(DMSA)2 in vitro. DMSA nie jest skuteczne w chelatacji rtęci z mózgu (Aposhian et al., 2003, Bucht i Lauwerysm 1989, George et al., 2004). Efekty uboczne stosowania DMSA obejmują zaburzenia trawienia, wysypkę na skórze i symptomy podobne do grypy. U niektórych pacjentów stwierdzono łagodną, a nawet umiarkowaną neutropenię i podczas terapii zaleca się regularne badania morfologii krwi. Przed terapią należy zbadać funkcje wątroby i nerek (Sweetman, 2002). DMSA jest uważany za najmniej toksyczny z chelatujących merkaptanów (Aposhian et al. 1995). DMSA ma okres półrozpadu równy 3,2 godziny (Aposhian et al., 1992b, Frumkin et al., 2001) i chelatuje również takie minerały jak miedź i cynk (Risher i Amler, 2005).

6. Kwas alfa-liponowy – jego rola w leczeniu zatrucia rtęcią?

6.1. ALA – kwas alfa-liponowy

Kwas alfa-liponowy (ALA) to dwusiarczek, który jest znany jako bardzo silny antyoksydant i stosowany jest szeroko jako suplement diety. Wewnątrzkomórkowo redukowany jest do kwasu dihydroliponowego (DHLA), ditiolu, który ma właściwości antyoksydacyjne. DHLA może być swobodnie transportowane z komórek do przestrzeni międzykomórkowej. Zarówno ALA, jak i DHLA tworzą chelaty z różnymi metalami ciężkimi (Packer et al., 1997, 1995). Podanie ALA zwiększa wewnątrzkomórkowe poziomy GSH o 30-70% (Packer et al., 1997) i ma zdolności regenerujące inne antyoksydanty, takie jak witaminy C i E. W przeciwieństwie do DMSA i DMPS, ALA dociera do wszystkich obszarów centralnego układu nerwowego i nerwów obwodowych (Packer et al., 1997).

Udowodniono, że ALA pełni rolę ochronną przeciwko efektom zatrucia rtęcią u licznych gatunków ssaków, jeśli kwas ten podany zostanie jednocześnie albo tuż po ekspozycji na rtęć (Donatelli, 2955, Grunert, 1960), zakładając że użyto właściwej dawki ALA (niewłaściwie odmierzone dawki zwiększają poziom zatrucia). Grunert (1960) zasugerował, że częstsze podawanie niższych dawek ALA może być również skuteczne w utrzymywaniu stałego poziomu ALA we krwi i efekt ten zaobserwowano u świnek morskich (którym podawano ALA co 4 godziny) ( Donatelli, 1955).

Aposhian et al. (2003) odkryli, że ALA podane samo albo z DMSA nie chelatuje rtęci w nerkach czy mózgu u szczurów poddanych działaniu wielokrotnych dawek oparów rtęci. Jednakże Gregus et al. (1992) wykazał, że podanie ALA szczurom prowadzi do zwiększonego wydalania rtęci nieorganicznej z żółcią (12-37-krotnie). Ten sam efekt nie dotyczy rtęci metylowanej. Gregus et al. (1992) zasugerował, że rtęć nieorganiczna może być wydalana w formie kompleksów DHLA-Hg2+.

Niezbędne są dalsze badania poświęcone ALA jako chelatorowi – w szczególności analiza chelatacji częstymi i niskimi dawkami, zasugerowanej przez Cutlera (1999). Chociaż nie recenzowaną naukowo publikacją, Cutler przekonująco uargumentował istotność częstotliwości podawania chelatora, co wzbudziło zainteresowanie społeczności naukowej. Podczas gdy wydawałoby się, że ALA ma duży potencjał jako chelator rtęci, jasno wynika również z prac Donatelli (1955) i Grunera (1960) że efekt działania ALA przy zatruciu rtęcią zależy od wielkości dawki i odstępu między dawkami w czasie.

7. Interakcje z ligandami i substancje odżywcze mające wpływ na zatrucie rtęcią.

Niewiele istnieje danych na temat wpływu, jakie mogą mieć na zatrucie rtęcią substancje odżywcze – zarówno w aspekcie ochrony przez rtęcią, jak i potęgowania jej działania przez interakcje z ligandami. Uwzględniając to, jaką rolę endogeniczne tiole, takie jak cysteina, odgrywają w transporcie rtęci po ludzkim organizmie, co podsumowali Bridges i Zalups (2005), wydawałoby się, że zróżnicowane poziomy tioli w osoczu prowadzą do zróżnicowanych poziomów retencji rtęci w organach. Rzeczywiście, w jednym z badań suplementacja NAC wyraźnie zwiększyła koncentrację rtęci w mózgu (Aposhian et al. 2003). Rodzi to wątpliwość, czy przyjmowanie z pożywieniem albo suplementami substancji zawierających tiole ma wpływ na transport rtęci do organów, a tym samym na poziom zatrucia. Najnowsze odkrycia dowodzą, że u szczurów ilość tioli to ważny czynnik w dystrybucji i eliminacji rtęci nieorganicznej (Zalups i Lash, 2006). Sugeruje się również, że u ludzi kontrolowanie poziomów cysteiny w osoczu jest istotne dla kontroli objawów i leczeniu zatrucia rtęcią (Cutler, 1999).

7.1. N-Acetyl-cysteina (NAC)/glutation (GSH)

NAC i GSH zasługują na szersze omówienie, gdyż niektórzy lekarze zalecają je jako leki na zatrucie rtęcią. Na pierwszy rzut oka wydawałoby się to logiczną decyzją, gdyż GSH jest związkiem, który ma wpływ na wydalanie rtęci metylowanej z żółcią (Ballatori i Clarkson, 1985), jak również uważa się, że wewnątrzkomórkowe GSH odgrywa rolę w ochronie komórek (Clarkson, 2002). Jednakże, tylko 1% obciążenia rtęcią metylowaną jest eliminowane z przewodu pokarmowego poprzez demetylację spowodowaną przez mikroflorę jelit – pozostała część jest reabsorbowana i przechodzi cykl enterohepatyczny (Clarkson, 2002). Co więcej, odkryto u szczurów, że koniugat rtęci z GSH zostaje faktycznie odkładana w nerkach jako rtęć organiczna (Bridges i Zalups, 2005). Koniugaty rtęci z GSH są konwertowane do koniugatów rtęci z cysteiną przez enzym gamma-glutamyltransferazę oraz cysteinylglicynazę w proksymalnych kanalikach nerkowych, prowadząc do zwiększonego odkładania się rtęci w nerkach. Dowiedziono również, że odkładanie się rtęci metylowanej w nerkach zależy od poziomu GSH (Richardson i Murphy, 1975). Aposhian et al. (2003) wykazał na przykładzie szczurów, które wystawiono na ekspozycję rtęci metalicznej, że NAC w widoczny sposób zwiększył koncentrację rtęci w mózgu. Dodatkowo, niedawno opublikowane wyniki badań Zalupsa i Ahmada (2005b) dowodzą, że koniugaty NAC oraz rtęci metylowanej i nieorganicznej są potencjalnie zdolnym do transportu związkami odkładanymi in vivo w komórkach nabłonka proksymalnych kanalików . Co więcej, ostatni z wymienionych eksperymentów przeprowadzono używając tkanek z nerek psich (MDCK) jednak z udziałem ludzkich transporterów anionów organicznych-1 (hOAT).

Przyjmując nieskuteczność eliminacji rtęci metylowanej przez żółć, znany mechanizm enterohepatyczny dotyczący rtęci metylowanej oraz odkładanie się rtęci w nerkach i mózgu (Bridges i Zalups, 2005; Kerper et al., 1992) (dotyczy rodzajów rtęci wchodzących w kompleksy z tiolami o niskiej masie cząsteczkowej), NAC i GSH wydają się niewłaściwym wyborem terapii zatrucia rtęcią z powodu wysokiego ryzyka redystrybucji rtęci do tych organów.

7. 2. Cynk

Cynk zwiększa w nerkach zwierząt produkcję metalotioneiny, , białka wiążącego metale (Goyer et al., 1995). Metalotioneina jest białkiem o niewielkiej masie cząsteczkowej o dużej zawartości pozostałości cysteiny i metali. Rtęć formuje z metalotioneiną kompleksy, a metalotioneina jest znana jako związek chroniący układ nerwowy przed ekspozycją na opary rtęci (Yoshida et al., 2005). Rtęć nieorganiczna i metaliczna indukuje produkcję metalotioneiny w nerkach, chociaż rtęć metylowana nie czyni tego bezpośrednio ale w oparciu o metabolizowanie się do formy rtęcie nieorganicznej.

7.3. Selen

Selen to pierwiastek, który ma wpływ na dystrybucję rtęci i redukcję zatrucia rtęcią, co wykazano w eksperymentach na zwierzętach (Goyer et al., 1995). Co ciekawe, Hol et al. (2001) wykazał, że poziom selenu we krwi był znacznie niższy u osób, które miały objawy „choroby amalgamatowej” w porównaniu do zdrowych osób z plombami amalgamatowymi.

Istnieją dowody na to, że selen w osoczu tworzy kompleksy z rtęcią nieorganiczną, które następnie łączą się z selenoproteiną-P (Galer et al., 2000 ; Sasakura i Suzuki, 1998), która z kolei zapobiega odkładaniu się rtęci w nerkach (Yamamoto, 1985). Funkcja selenoproteiny-P nie jest dobrze zbadana, jednak warto zaznaczyć, że badacze tej kwestii rozważają trzy możliwe role tej substancji: (1) obrona antyoksydacyjna; (2) rola w transporcie selenu; (3) rola ochronna jako naturalny chelator metali ciężkich (Chen i Berry, 2003).

Zaobserwowano jednak u szczurów, że jednoczesne podawanie selenu (w formie selenitu sodu) oraz związku chelatacyjnego (DMSA lub DMPS) prowadzi do zmniejszonego wydzielania i znacznej redystrybucji rtęci – w szczególności zmniejszeniu rtęci w nerkach i zwiększeniu jej w wątrobie, choć wypada zaznaczyć, że inne organy nie były przedmiotem badań (Juresa et al., 2005). Jako, iż wykorzystywane chelatory (DMSA i DMPS) zwiększają wydalanie rtęci z moczem, a selenoproteina-P zapobiega odkładaniu się rtęci w nerkach, Juresa et al. (2005) zasugerowali, że konkurowanie ligand pomiędzy chelatorami i selenoproteiną-P prowadzi do redystrybucji rtęci i zmniejszonego wydzielania jej z moczem.

Kolejny czynnik komplikujący kwestię związku selenu i zatrucia rtęcią to zwiększanie produkcji GSH w wątrobie przy zmniejszonym poziomie selenu (Hill i Burk, 1985), prowadzący nawet do podwojenia poziomu GSH w osoczu. Jak wcześniej wskazano, GSH ma związek z odkładaniem się rtęci w nerkach, a więc efekt selenu na poziom GSH może mieć również znaczenie dla zatrucia rtęcią.

Warto zauważyć, że istotna jest forma przyjmowanego selenu. Selen w formie selenometioniny jest mniej więcej dwa razy tak biologicznie dostępny jak selenit sodu i dodatkowo zwiększa poziom selenoproteiny-P i poziom selenu w osoczu (Xia et al., 2005) (uwaga: całkowity poziom selenu obejmuje selen związany z proteiną i selenometioninę).

Jak widać, interakcje pomiędzy rtęcią, selenem, cynkiem i tiolami są dość złożone. Przypuszcza się, że przyjmowanie selenu, cynku i tioli odgrywa ważną rolę przy rozpatrywaniu efektów rtęci na organizm człowieka i poziomu wydalania rtęci. Kwestia ta wymaga dalszych badań.

7. 4. Błonnik spożywczy.

Brakuje informacji o wpływie błonnika spożywczego na zatrucie rtęcią. Jednakże, badania in vitro dowiodły, że otręby pszennie mogą skutecznie wiązać rtęć i inne metale ciężkie (Ou et al., 1999). U myszy poddanych ekspozycji na rtęć metylowaną, dieta w 30% składająca się z otrębów doprowadziła do zwiększenia tempa eliminacji rtęci z ciała i do redukcji poziomu rtęci w mózgu (Rowland et al., 1986). Dowiedziono też, że pektyny jabłkowe skróciły okres zatrucia u dzieci powodując zwiększone wydalanie rtęci z moczem (Sobolev et al., 1999).

Autor ten sugeruje potencjalny mechanizm działania, który prowadzi do zwiększenia wydalania rtęci przez błonnik spożywczy. Rtęć metylowana przechodzi intensywny cykl enterohepatyczny (Clarkson, 2002). Jako, iż dowiedziono in vitro że błonnik łączy ze sobą rtęć, a do tego błonnik nie jest przyswajalny, zasugerowano, że błonnik w diecie przerywa cykl enterohepatyczny, wiążąc rtęć i zwiększając tempo jej wydalania.

Co więcej, Gregus et al. (1992) zasugerował, że kwas alfa-liponowy prowadzi do zwiększonego wydalania rtęci nieorganicznej z żółcią w formie kompleksów DHLA-Hg2+. Jako, iż kompleksy te są podobne do organicznych rodzajów rtęci, warto rozważyć, że mogą zostać ponownie absorbowane przez jelita podobnie jak rtęć metylowana. Gdyby tak było, a błonnik byłby zdolny do związania tych kompleksów, zwiększona podaż błonnika mogłaby prowadzić do zmniejszonej reabsorpcji tych kompleksów, a co za tym idzie do zwiększonej skuteczności leczenia i zmniejszenia efektów ubocznych.

8. Diagnostyka zatrucia rtęcią w kontekście roli tioli, ditioli i wchodzących w interakcje ligand.

8.1. Poziomy w krwi i moczu

Przy niedawnej ekspozycji na rtęć, zbadanie poziomów rtęci w krwi i moczu może być użyteczne diagnostycznie i w celu obliczenia właściwej dawki (Clarkson 2002; Risher i Dewoskin, 1999; Risher i Amler, 2005). Jednakże przy ekspozycji przeszłej, przewlekłej albo na niskie dawki rtęci (Rosher i Dewoskin, 1999), poziomy rtęci w krwi i moczu nie odzwierciedlają stopnia zatrucia. Dodatkowo czas odkładania się rtęci w niektórych organach, w szczególności w mózgu (Braunwald et al., 2001, Hargreaves et al., 1988, Opitz et al., 1996, Takeuchi et al. 1989, Vahter et al., 1994) jest o wiele dłuższy niż we krwi. Warto odnotować, że u robotników, narażonych na ekspozycję na duże ilości rtęci (Opitz et al., 1996) po przejściu leczenia, stwierdzono stałe poziomy rtęci w krwi i moczu przez kolejne 3 lata aż do całkowitego uwolnienia organizmu z rtęci. Jednakże po śmierci pacjenta, 17 lat później, stwierdzono w jego mózgu znaczne ilości rtęci . Najwidoczniej w tym przypadku, poziom rtęci w krwi i moczu nie był miarodajnym wskaźnikiem obciążenia organizmu rtęcią (Uwaga: przy pomiarach rtęci w moczu, należy jednocześnie zmierzyć poziom kreatyniny w celu skontrolowania poziomu nawodnienia).

Po pierwsze, co zostało wcześniej omówione, jest możliwe, że poziom tioli, selenu i prawdopodobnie cynku mogą mieć efekt (bezpośredni albo pośredni) na dystrybucję rtęci. Niewiele wiadomo o interakcjach tych związków z chelatorami jak DMSA czy DMPS, chociaż wiadomo, że jednoczesne podanie selenu z DMSA lub DMPS prowadzi do zmniejszonej efektywności chelatorów (Juresa et al., 2005). Aktualne testy prowokacyjne nie uwzględniają w żaden sposób tych istotnych zmiennych.

W swojej pracy o testach prowokacyjnych DMPS Aposhian et al. (1992a) stwierdził „…bardzo znaczącą pozytywną korelację pomiędzy rtęcią wydalaną w moczu dwie godziny po podaniu DMPS

9. Testy prowokacyjne w chelatacji

W testach prowokacyjnych, mierzy się podstawowy poziom metalu w moczu (zwykle jednego z metali, np. rtęci, ołowiu) przed podaniem związku chelatacyjnego, a po pewnym okresie czasu pobiera się drugą próbkę moczu i ponownie mierzy poziom metalu. Poziomy metalu przed i po obciążeniu są następnie porównywane ze sobą jak i istniejącymi normami.

Do wykonywania tego typu testów wykorzystywano zarówno DMPS, jak i DMSA ze zróżnicowanymi rezultatami (Aposhian et al., 1992a; Frumkin et al., 2001; Roels et al. 1991). Podczas gdy niektórzy z autorów skupili się na klinicznym wykorzystaniu testów prowokacyjnych i interpretacji wyników, tłumacząc brak jednoznaczności tych wyników (Risher i Amler, 2005), oczywistym jest że są mechanizmy i założenia dotyczące metodologii samych testów, które należy rozważyć.

Po pierwsze, jak już wcześniej wspomniano, jest wysoce prawdopodobnym, że poziom tioli, selenu i cynku mają wpływ (bezpośredni lub pośredni) na dystrybucję rtęci. Niewiele wiadomo o interakcjach tych związków z chelatorami takimi jak DMPS czy DMSA, chociaż zaobserwowano, że jednoczesne podawania selenu z DMPS lub DMSA prowadzi do zmniejszenia skuteczności chelatorów (Jursa et al., 2005). Aktualnie testy prowokacyjne nie uwzględniają tych współistniejących zmiennych.

W swojej pracy o testach prowokacyjnych DMPS Aposhian et al. (1992a) odkrył „bardzo znaczącą pozytywną korelację pomiędzy rtęcią wydalaną w moczu dwie godziny po podaniu DMPS a ilością plomb amalgamatowych”. Warto zauważyć, że podczas przeprowadzania tego eksperymentu w ścisły sposób kontrolowano dietę uczestników, chociaż zostało to wyraźnie stwierdzone dopiero w późniejszej publikacji (Aposhian et al., 1995). Z klinicznego punktu widzenia testy prowokacyjne są często stosowane przez pacjentów bez wiedzy lekarza (Risher i Amler, 2005), co sugeruje, że wystandaryzowana kontrola dietetyczna nie jest stosowana. Wydaje się uzasadnionym, że ścisła kontrola dietetyczna zastosowana przez Aposhiana et al. (1992a, 1995) mogła w jakimś stopniu zminimalizować (albo wystandaryzować) poziomy kompetycyjnych ligand w osoczu uczestników eksperymentu, a w konsekwencji do bardziej przejrzystych jego wyników.

Po drugie, duże dożylne dawki, zwykle stosowane w testach prowokacyjnych, niosą ze sobą ryzyko redystrybucji rtęci. Jak wcześniej zaobserwowano, chelatory konkurują z innymi ligandami, m.in. enogenicznymi wolnymi tiolami, tiolami łączącymi fragmenty białek oraz metaloproteinami takimi jak selenoproteina-P i metalotioneina. Zaobserwowano taką redystrybucję u szczurów, co wiązało się z kompetycją pomiędzy selenoproteiną-P po podaniu zarówno DMPS jak i DMSA (Juresa et al., 2005). Używając większej dożylnej dawki, większe ilości rtęci są mobilizowane i w ten sposób zwiększa się w przypadku redystrybucji ilość rtęci redystrybuowanej do innych organów. Najgorszym scenariuszem wydaje się redystrybucja rtęci do mózgu, z jednej strony z uwagi na fakt, iż tam ma ona najdłuższy okres półrozpadu (Braunwald et al., 2001, Hargreaves et al., 1988, Opitz et al., 1996, Takeuchi et al., 1989; Vahter et al., 1994), a z drugiej strony z uwagi na niemożność usunięcia jej z mózgu przez DMSA czy DMPS (Aposhian et al., 2003, Bucht i Lauwerys, 1989; George et al., 2004). Co więcej, należy rozważyć, że mogą mieć miejsce uboczne skutki podawania leków i przy tak dużych ich dawkach mogą wystąpić gorsze reakcje na leki.

Po trzecie, testy prowokacyjne są zwykle przeprowadzane u pacjentów z plombami amalgamatowymi. Budzi to wątpliwość, czy związki chelatujące mogą chelatować rtęć z plomb amalgamatowych prowadząc do niedokładnych rezultatów i – co poważniejsze – do zwiększenia obciążenia rtęcią organizmu pacjenta. Autor niniejszej publikacji nie znalazł jakichkolwiek wyników badań dotyczących tej możliwości.

Po czwarte, jako że DMPS i DMSA nie chelatują rtęci z mózgu (Aposhian et al., 2003; Bucht i Lauwrys, 1989; George et al., 2004) testy prowokacyjne oparte na tych związkach nie oddają w sposób dokładny poziomu rtęci w mózgu. Jako, iż mózg jest jednym z głównych organów, w których osadza się na wiele lat rtęć metaliczna i organiczna (Braunwald et al., 2001; Hargreaves et al., 1988; Opitz et al., 1996; Takeuchi et al., 1989; Vahter et al., 1994), jest to istotna wada testów prowokacyjnych.

Po piąte, nie ma określonych norm maksymalnej i minimalnej ekspozycji na rtęć ani żadnego dozwolonego „bezpiecznego” poziomu ekspozycji na rtęć (Berlin, 2003; Risher i Amler, 2005). To oznacza, że wyniki testów prowokacyjnych nie mogą być porównane do żadnych norm i stało się to przyczyną krytyki testów prowokacyjnych (Risher i Amler, 2005). Jest w tym pewna przewrotna logika, gdyż aby ustalić normy dla populacji, należy najpierw opracować dokładny test. Co więcej, uwzględniając fakt, że rtęć jest bardzo toksyczny pierwiastkiem o nieustalonych funkcjach odżywczych, jest powszechna w środowisku (Clarkson et al., 2003), nie ma jasno określonej granicy bezpiecznej ekspozycji (Berlin 2003, Risher i Amler, 2005) i nie ma aktualnie powszechnie zaakceptowanej metody określania poziomu obciążenia organizmu rtęcią, poza autopsją, sam pomysł ustalenia ogólnych norm dotyczących ekspozycji na rtęć wydaje się, w chwili pisania tych słów, całkowicie niepoważnym postulatem.

10. Wnioski

Znaczenie rtęci w rozwoju wielu przewlekłych stanów chorobowych, takich jak stwardnienie zanikowe boczne (choroba Lou Gehringa), autyzm, choroba Alzheimera, stwardnienie rozsiane i choroba Parkinsona pozostaje kwestią kontrowersyjną. Jasnym jest, że wciąż istnieją znaczące luki w wiedzy na temat biologicznych mechanizmów działania różnych rodzajów rtęci na organizm. Wygląda jednak na to, iż osoby cierpiące na wyżej wymienione choroby same podejmują decyzje i poszukują dróg leczenia chelatacyjnego na własną rękę lub za radą swoich lekarzy (Berlin 2003; Risher i Amler, 2005). Jak widać, istnieje pilna potrzeba dalszych badań licznych kluczowych kwestii.

DMPS i DMSA to leki wybierane przy zatruciu rtęcią. Są dowody na to, że nie są one maksymalnie efektywnymi chelatorami (George et al., 2004) i są nieskuteczne w chelatowaniu rtęci z mózgu (Aposhian et al., 2003; Bucht i Lauwerys, 1989; George et al., 2004). Pomimo, iż są mniej toksyczne niż związki chelatujące rajue haj British Anti-Lewisite (BAL) i D-Penicillamine, mają również pewne toksyczne efekty uboczne (w szczególności DMPS). Istnieje potrzeba opracowania bardziej skutecznych i bezpiecznych związków chelatacyjnych, które będą w stanie usunąć rtęć z mózgu.

Aktualnie ALA jest jedynym chelatorem potencjalnie zdolnym do przeniknięcia do centralnego i obwodowego układu nerwowego. Chociaż przy zastosowaniu pewnego konkretnego harmonogramu dawkowania związek ten nie miał właściwości chelatacyjnych (Aposhian et al., 2003), poprzednie badania udowodniły, że działanie ALA zależne jest zarówno od wielkości jak i częstotliwości dawki (Donatelli 1955; Grunert 1960). Dalsze badanie tej kwestii jest niezbędne w celu ustalenia przydatności ALA jako chelatora klinicznego.

Wydaje się oczywistym w wyniku badań Bridgesa i Zalupsa (2005), że tiole endogeniczne, takie jak cysteina, homocysteina, GSH i NAC odgrywają ważną rolę w dystrybucji rtęci w organizmie. Jest to prawdopodobnie bardzo istotne z klinicznego punktu widzenia i należy przeprowadzić dalsze badania w celu ustalenia potencjalnych efektów podaży tioli w diecie i suplementacji na dystrybucję i toksyczność rtęci. Wielu lekarzy doradza stosowanie GSH albo NAC w terapii zatrucia rtęcią – nie wydaje się to działaniem rozsądnym w świetle dostępnych dowodów.

Cynk i selen również wydają się mieć wpływ na dystrybucję rtęci i ochronę przed jej toksycznością. Są to relacje bardzo dynamiczne i aktualnie słabo zrozumiane. Inne pierwiastki również mogą odgrywać ważną rolę, a interakcje cynku i seleny z chelatorami takimi jak DMPS/DMSA nie zostały wystarczająco dokładnie opisane.

Efekt przyjmowania błonnika spożywczego na dystrybucję i eliminację rtęci jest kolejnym dużym nieodkrytym polem badawczym. Kilka istniejących publikacji wskazuje jednakże na rolę błonnika spożywczego jako substancji potencjalnie wzmacniającej eliminację rtęci metylowanej z organizmu. Efekt błonnika spożywczego na eliminację DHLA-Hg2+ nie został dokładnie oznaczony.

Istnieje pilna potrzeba opracowania dokładnej metody diagnozowania zatrucia rtęcią w praktyce klinicznej w przypadku ekspozycji na rtęć – przeszłej, przewlekłej albo w niskich dawkach. Podczas gdy zaleca się w tym zakresie badanie poziomu rtęci w moczu i we krwi (Risher i Amler, 2005), są to testy użyteczne jedynie w przypadku niedawnej ekspozycji na rtęć i nie odzwierciedlają poziomu rtęci w mózgu. Aktualne testy prowokacyjne są niedokładne i z powodu stosowanych w nich dużych dawkach, niosą ze sobą ryzyko redystrybucji rtęci i efektów ubocznych na stosowane leki. Nie jest również zrozumiałe, jaki efekt będzie miało użycie związku chelatacyjnego u pacjenta z plombami amalgamatowymi.

Nie zostały również określone normy dla obciążenia organizmu rtęcią i bezpieczny poziom ekspozycji na rtęć. Przy braku dokładnych testów klinicznych pomysł określenia takich norm ma i tak niewielkie znaczenie. Co więcej, podczas gdy cała debata skupia się na bezpieczeństwie plomb amalgamatowych, stosowania tiomersalu i spożycia ryb zawierających rtęć oraz możliwej roli rtęci w niektórych chorobach przewlekłych, wydawałoby się logicznym opracowanie w pierwszej kolejności dokładnej metody określania poziomu rtęci w organizmie u zatrutych osób, gdyż bez tego nie będzie możliwe rozwikłanie innych kwestii.

Uwzględniając możliwość, że rtęć może mieć duże znaczenie w przebiegu licznych chorób, należy pilnie odpowiedzieć na wszystkie pytania dotyczące kwestii rtęci. Oczywistym jest, że tiole, ditiole, składniki odżywcze i interakcje z ligandami odgrywają ważną rolę w toksykologii rtęci. Lepsze zrozumienie roli tych cząsteczek może być kluczowe dla opracowania lepszych testów klinicznych zatrucia rtęcią i być może również dla opracowania bardziej skutecznych protokołów leczenia zatrucia rtęcią.

Oświadczenie dotyczące konfliktu interesów

Nie istnieje konflikt interesów.

Podziękowania

Dziękuję za wsparcie profesora Kevina Nolana z Royal College of Surgeons w Irlandii oraz całego Royal College of Surgeons w Irlandii

Bibliografia

  1. Aposhian, H.V., Bruce, D.C., Alter, W., Dart, R.C., Hurlbut, K.M., Aposhian, M.M., 1992a. Urinary mercury after administration of 2,3-dimercaptopropane-1-sulfonic acid: correlation with dental amalgam score. FASEB J. 6, 2472-2476.
  2.  Aposhian, H.V., Maiorino, R.M., Gonzalez-Ramirez, D., Zuniga-Charles, M., Xu, Z., Hurlbut, K.M., Junco-Munoz, P., Dart, R.C., Aposhian, M.M., 1995. Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology 97, 23-38.
  3.  Aposhian, H.V., Maiorino, R.M., Rivera, M., Bruce, D.C., Dart, R.C., Hurlbut, K.M., Levine, D.J., Zheng, W., Fernando, Q., Carter, D., et al., 1992b. Human studies with the chelating agents, DMPS and DMSA. J. Toxicol. Clin. Toxicol. 30, 505-528.
  4.  Aposhian, H.V., Morgan, D.L., Queen, H.L., Maiorino, R.M., Aposhian, M.M., 2003. Vitamin C, glutathione, or lipoic acid did not decrease brain or kidney mercury in rats exposed to mercury vapor. J. Toxicol. Clin. Toxicol. 41, 339-347.
  5.  Ballatori, N., Clarkson, T.W., 1985. Biliary secretion of glutathione and of glutathione-metal complexes. Fundam. Appl. Toxicol. 5, 816-831.
  6.  Berlin, M., 2003. Mercury in dental-fillings materials – an updated risk analysis in environmental medical terms. The Dental Material Commision – Care and Consideration.
  7.  Braunwald, E., Fauci, A.S., Kasper, D.L., Hauser, S.L., Longo, D.L., Jameson, J.L., 2001. Harrison’s Principles of Internal Medicine.McGraw-Hill, pp. 467-469, 2592-2593, 2602.
  8.  Bridges, C.C., Zalups, R.K., 2005. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 204,274-308.
  9.  Buchet, J.P., Lauwerys, R.R., 1989. Influence of 2,3-dimercaptopropane-1-sulfonate and dimercaptosuccinic acid on the mobilization of mercury from tissues of rats pretreated with mercuric chloride, phenylmercury acetate or mercury vapors. Toxicology 54, 323-333.
  10.  Champe, P.C., Harvey, R.A., Ferrier, D.R., 2005. Lippincott’s Illus-trated Reviews: Biochemistry, 146. Lippincott Williams & Wilkins, pp. 108-110, 146, 264.
  11.  Charleston, J.S., Body, R.L., Bolender, R.P., Mottet, N.K., Vahter, M.E., Burbacher, T.M., 1996. Changes in the number of astrocytes and microglia in the thalamus of the monkey Macaca fascicularis following long-term subclinical methylmercury exposure. Neuro-toxicology 17, 127-138.
  12.  Charleston, J.S., Body, R.L., Mottet, N.K., Vahter, M.E., Burbacher, T.M., 1995. Autometallographic determination of inorganic mer-cury distribution in the cortex of the calcarine sulcus of the monkey Macaca fascicularis following long-term subclinical exposure to methylmercury and mercuric chloride. Toxicol. Appl. Pharmacol. 132, 325-333.
  13.  Chen, J., Berry, M.J., 2003. Selenium and selenoproteins in the brain and brain diseases. J. Neurochem. 86, 1-12.
  14.  Clarkson, T.W., 1972. The pharmacology of mercury compounds. Annu. Rev. Pharmacol. 12, 375-406.
  15.  Clarkson, T.W., 2002. The three modern faces of mercury. Environ. Health Perspect. 110 (Suppl. 1), 11-23
  16.  Clarkson, T.W., Magos, L., Myers, G.J., 2003. The toxicology of mercury—current exposures and clinical manifestations. N. Engl. J. Med. 349, 1731-1737.
  17.  Cutler, A., 1999. Amalgam Illness: Diagnosis and Treatment. Self-Published, pp. 195-196, 199-208.
  18.  Davis, L.E., Kornfeld, M., Mooney, H.S., Fiedler, K.J., Haaland, K.Y.,Orrison, W.W., Cernichiari, E., Clarkson, T.W., 1994. Methylmercury poisoning: long-term clinical, radiological, toxicological, and pathological studies of an affected family. Ann. Neurol. 35,680-688.
  19.  Donatelli, L., 1955. Internal Symposium on Thioctic Acid, Naples.
  20.  Frumkin, H., Manning, C.C., Williams, P.L., Sanders, A., Taylor, B.B., Pierce, M., Elon, L., Hertzberg, V.S., 2001. Diagnostic chelation challenge with DMSA: a biomarker of long-term mercury expo-sure? Environ. Health Perspect. 109, 167-171.
  21.  Gailer, J., George, G.N., Pickering, I.J., Madden, S., Prince, R.C., Yu,E.Y., Denton, M.B., Younis, H.S., Aposhian, H.V., 2000. Structural basis of the antagonism between inorganic mercury and selenium in mammals. Chem. Res. Toxicol. 13, 1135-1142.
  22.  Geier, D.A., Geier, M.R., 2006. Early downward trends in neurode-velopmental disorders following removal ofthimerosal-containing vaccines. J. Am. Physicians Surgeons 11, 8-13.
  23.  George, G.N., Prince, R.C., Gailer, J., Buttigieg, G.A., Denton, M.B.,Harris, H.H., Pickering, I.J., 2004. Mercury binding tothe chelation therapy agents DMSA and DMPS and the rational design ofcustom chelators for mercury. Chem. Res. Toxicol. 17, 999-1006.
  24.  Goyer, R., Klaassen, C.D., Waalkes, M.P., 1995. Metal Toxicology. Academic Press, pp. 35-37.
  25.  Gregus, Z., Stein, A.F., Varga, F., Klaassen, C.D., 1992. Effect of lipoic acid on biliary excretion of glutathione and metals. Toxicol. Appl.Pharmacol. 114, 88-96.
  26.  Grunert, R.R., 1960. The effect of DL-alpha-lipoic acid on heavy-metal intoxication in mice and dogs. Arch. Biochem. Biophys. 86,190-194.
  27.  Hargreaves, R.J., Evans, J.G., Janota, I., Magos, L., Cavanagh, J.B., 1988. Persistent mercury in nerve cells 16 years after metal-lic mercury poisoning. Neuropathol. Appl. Neurobiol. 14, 443­452.
  28.  Hill, K.E., Burk, R.F., 1985. Effect of selenium deficiency on the disposition of plasma glutathione. Arch. Biochem. Biophys. 240,166-171.
  29.  Hol, P.J., Vamnes, J.S., Gjerdet, N.R., Eide, R., Isrenn, R., 2001. Dental amalgam and selenium in blood. Environ. Res. 87, 141-146.
  30.  Juresa, D., Blanusa, M., Kostial, K., 2005. Simultaneous administra-tion of sodium selenite and mercuric chloride decreases efficacy of DMSA and DMPS in mercury elimination in rats. Toxicol. Lett. 155, 97-102.
  31.  Kerper, L.E., Ballatori, N., Clarkson, T.W., 1992. Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am. J. Physiol. 262, R761-R765.
  32.  Lorscheider, F.L., Vimy, M.J., Summers, A.O., 1995. Mercury expo-sure from “silver” tooth fillings: emerging evidence questions a traditional dental paradigm. FASEB J. 9, 504-508.
  33.  Magos, L., Brown, A.W., Sparrow, S., Bailey, E., Snowden, R.T., Skipp, W.R., 1985. The comparative toxicology of ethyl- and methylmer-cury. Arch. Toxicol. 57, 260-267.
  34.  Mutter, J., Naumann, J., Sadaghiani, C., Walach, H., Drasch, G., 2004.Amalgam studies: disregarding basic principles of mercury toxicity. Int. J. Hyg. Environ. Health 207, 391-397.
  35.  Nierenberg, D.W., Nordgren, R.E., Chang, M.B., Siegler, R.W., Blayney, M.B., Hochberg, F., Toribara, T.Y., Cernichiari, E., Clark-son, T., 1998. Delayed cerebellar disease and death after accidental exposure to dimethylmercury. N. Engl. J. Med. 338, 1672-1676.
  36.  Nylander, M., Friberg, L., Eggleston, D., Bjorkman, L., 1989. Mercury accumulation in tissues from dental staff and controls in relation to exposure. Swed. Dent. J. 13, 235-243.
  37.  Opitz, H., Schweinsberg, F., Grossmann, T., Wendt-Gallitelli, M.F., Meyermann, R., 1996. Demonstration of mercury in the human brain and other organs 17 years after metallic mercury exposure. Clin. Neuropathol. 15, 139-144.
  38.  Ou, S., Gao, K., Li, Y., 1999. An in vitro study of wheat bran binding capacity for Hg, Cd, and Pb. J. Agric. Food Chem. 47, 4714-4717.
  39.  Ozuah, P.O., 2000. Mercury poisoning. Curr. Probl. Pediatr. 30,91-99.
  40.  Parker, S.K., Schwartz, B., Todd, J., Pickering, L.K., 2004. Thimerosal-containing vaccines and autistic spectrum disorder: a critical review of published original data. Pediatrics 114, 793-804.
  41.  Packer, L., Tritschler, H.J., Wessel, K., 1997. Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic. Biol. Med. 22, 359-378.
  42.  Packer, L., Witt, E.H., Tritschler, H.J., 1995. Alpha-lipoic acid as a biological antioxidant. Free Radic. Biol. Med. 19, 227-250.
  43.  Richardson, R.J., Murphy, S.D., 1975. Effect of glutathione deple-tion on tissue deposition of methylmercury in rats. Toxicol. Appl. Pharmacol. 31, 505-519.
  44.  Risher, J.F., Amler, S.N., 2005. Mercury exposure: evaluation and intervention the inappropriate use ofchelating agents in the diagno-sis and treatment of putative mercury poisoning. Neurotoxicology 26, 691-699.
  45.  Risher, J., Dewoskin, R., 1999. Toxicological profile for Mercury. In: Services, U.D. O. H. A. H. (Ed.), Agency for Toxic Substances and Disease Registry.
  46.  Roels, H.A., Boeckx, M., Ceulemans, E., Lauwerys, R.R., 1991. Urinary excretion of mercury after occupational exposure to mercury vapour and influence of the chelating agent meso-2,3-dimercaptosuccinic acid (DMSA). Br. J. Ind. Med. 48, 247-253.
  47.  Rowland, I.R., Mallett, A.K., Flynn, J., Hargreaves, R.J., 1986. The effect of various dietary fibres on tissue concentration and chemi­cal form of mercury after methylmercury exposure in mice. Arch.Toxicol. 59, 94-98.
  48.  Sasakura, C., Suzuki, K.T., 1998. Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P. J. Inorg. Biochem. 71, 159-162.
  49.  Sobolev, M.B., Khatskel, S.B., Muradov, A., 1999. Enterosorption by nonstarch polysaccharides as a method of treatment of children with mercury poisoning. Vopr. Pitan. 68, 28-30. Sweetman, S., 2002. Martindale: The Complete Drug Reference. Pharmaceutical Press, pp. 1024-1026.
  50.  Takeuchi, T., Eto, K., Tokunaga, H., 1989. Mercury level and his-tochemical distribution in a human brain with Minamata disease following a long-term clinical course of twenty-six years. Neuro-toxicology 10, 651-657.
  51.  Tepel, M., Van der giet, M., Schwarzfeld, C., Laufer, U., Liermann, D., Zidek, W., 2000. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N. Engl. J. Med. 343 (3), 180-184.
  52.  Vahter, M., Mottet, N.K., Friberg, L., Lind, B., Shen, D.D., Burbacher, T., 1994. Speciation of mercury in the primate blood and brain following long-term exposure to methyl mercury. Toxicol. Appl. Pharmacol. 124, 221-229.
  53.  Vahter, M.E., Mottet, N.K., Friberg, L.T., Lind, S.B., Charleston, J.S., Burbacher, T.M., 1995. Demethylation of methyl mercury in dif-ferent brain sites of Macaca fascicularis monkeys during long-term subclinical methyl mercury exposure. Toxicol. Appl. Pharmacol. 134, 273-284.
  54.  Xia, Y., Hill, K.E., Byrne, D.W., Xu, J., Burk, R.F., 2005. Effectiveness of selenium supplements in a low-selenium area of China. Am. J. Clin. Nutr. 81, 829-834.
  55.  Yamamoto, I., 1985. Effect of various amounts of selenium on the metabolism of mercuric chloride in mice. Biochem. Pharmacol. 34, 2713-2720.
  56.  Yoshida, M., Watanabe, C., Horie, K., Satoh, M., Sawada, M., Shi-mada, A., 2005. Neurobehavioral changes in metallothionein-null mice prenatally exposed to mercury vapor. Toxicol. Lett. 155, 361-368.
  57.  Zalups, R.K., 2000. Molecular interactions with mercury in the kidney. Pharmacol. Rev. 52 (1), 113-143.
  58.  Zalups, R.K., Ahmad, S., 2005a. Handling of the homocysteine S-conjugate of methylmercury by renal epithelial cells: role of organic anion transporter 1 and amino acid transporters. J. Pharmacol. Exp. Ther. 315, 896-904.
  59.  Zalups, R.K., Ahmad, S., 2005b. Transport of W-acetylcysteine S-conjugates of methylmercury in Madin-Darby canine kidney cells stably transfected with human isoform of organic anion transporter 1. J. Pharmacol. Exp. Ther. 314, 1158-1168.
  60.  Zalups, R.K., Lash, L.H., 2006. Cystine alters the renal and hepatic disposition of inorganic mercury and plasma thiol status. Toxicol. Appl. Pharmacol. 214, 88-97.

Rtęć a choroba Alzheimera

Badania dowodzą, że rtęć jest prawdopodobną przyczyną choroby Alzheimera
Business Wire 15-11-2010

Tłumaczenie:

W artykule mającym być opublikowanym 15 listopada (2010r) w kolejnym wydaniu “Dziennika Choroby Alzheimera” (Journal of Alzheimer’s Disease) badacze odkryli, że rtęć jest jedna z prawdopodobnych przyczyn choroby Alzheimera. Rtęć jest jedna z najbardziej naturalnie występujących substancji. Stanowi niebezpieczeństwo dla ludzi może prowadzić do chorób neurodegeneratywnych takich jak Alzheimer. Po systematycznym przeglądzie istniejącej literatury dot. badan eksperymentalnych i klinicznych, badacze z Viadrina European University, Samueli Institute (Virginia, USA), Northeastern University (Boston, MA, USA) i University Hospital Freiburg odkryli ze symptomy i cechy choroby Alzheimera dało się odtworzyć i przyśpieszyć gdy wprowadzono rtęć.

Rtęć mocno wiąże się z selenem, naturalnie występującym metalem w naszej diecie istotnym dla dobrego zdrowia. Białka powiązane z selenem tworzą klasę molekuł które zapobiegają uszkodzeniom i stresowi oksydacyjnemu, który ma miejsce przy aktywności metabolicznej. Stres oksydacyjny prowadzi do śmierci komórek i starzenia. Gdy rtęć wiąże się z selenem, ten proces może być przyspieszony, tak jak inne choroby degeneratywne w mózgu.

Badawcza literatura naukowa wykazuje ze w modelach zwierzęcych i komórkowych dochodzi do reprodukcji cech choroby Alzheimera, gdy poda się rtęć. Przykładowo, jednym z szerzej znanych zastosowań rtęci jest w stomatologicznych wypełnieniach rtęciowych, najczęściej używanych w stomatologii. Badania niskodawkowych ekspozycji, takich jak u dentystów lub ich asystentów, wykazują ze ekspozycja na rtęć jest znacznie skorelowana z problemami neurologiczno-psychologicznymi.

Rtęć może być wprowadzona do organizmu na wiele sposobów, ponieważ paruje w temperaturze pokojowej. Może być przyjęta w postaci lotnej, sięgając bezpośrednio do mózgu, przez nos albo pośrednio przez krew. Następnie przekracza barierę krew-mózg i jest zamknięta w mózgu, gdzie kumuluje się przez długi okres czasu.

Sytuacja przypomina ta z początku lat 70tych dot. palenia: dość eksperymentalnych dowodów istniało, lecz badania na ludziach były wówczas niejednoznaczne i były atakowane prze grupy z określonym interesem ekonomicznym.” mówi Professor Harald Walach, PhD, z Viadrina European University i Samueli Institute Fellow. „Czekanie aż dość niezbitych dowodów się pojawi nie jest najlepszym rozwiązaniem w świetle tego co już wiemy o toksyczności rtęci.

Usunięcie rtęci z obiegu ekologicznego może okazać się najłatwiejszym i najbardziej efektywnym działaniem ochrony zdrowia publicznego przyczyniającym się do prewencji choroby Alzheimera.”

http://www.lef.org/news/LefDailyNews.htm?NewsID=10425&Section=AGING&source=DHB_101116&key=Body+ContinueReading

 

Dlaczego chelatować dzieci?

Andrew Hall Cutler „Amalgam Illness”

Dlaczego chelatować dzieci?

 

Wielu dzieci dotyka zatrucie rtęcią albo innymi toksynami środowiskowymi. Powodują one często opóźnienia w rozwoju, problemy z uczeniem się, autyzm, hiperaktywność, alergie i astmę. Można te schorzenia wyleczyć stosowną detoksykacją a jeśli ma ona miejsce w dzieciństwie, większość deficytów w rozwoju intelektualnym, emocjonalnym i fizycznym można nadrobić poprzez ciągle trwający proces wzrostu, który w naturalny sposób zmienia i poprawia te kwestie.

Niestety wielu lekarzy boi się spróbować czegokolwiek, aby pomóc dzieciom, ze strachu przed odpowiedzialnością za ewentualne następstwa, gdyż mechanizm metabolizmu u dzieci jest zbadany w dużo mniejszym stopniu niż analogiczny mechanizm u osób dorosłych, jak również trzeba dokładnie prześledzić wszystkie wyniki badać aby ustalić, które różnią się od norm z uwagi na młody wiek pacjenta. Dodatkowo, dawki leków dostosowane są do wagi, co wymaga przeliczenia ich przy wypisywaniu recept zamiast wypisywania dokładnie tej samej dawki dla każdej osoby, jak ma to miejsce z dorosłymi.

Jest istotnym, aby wcześnie podjąć leczenie dzieci tak, aby nie przegapić szansy na całkowite wyleczenie związane z naturalnym procesem rozwoju. Dzieci leczą się szybciej i w większym stopniu z wielu schorzeń niż dorośli. Dzieci maja też tę zaletę, że przez cały czas ktoś się nimi zajmuje. Dorośli muszą poświęcać wiele energii na troszczenie się o siebie samych, zarabianie na utrzymanie, organizowanie wielu rzeczy. Dzieci nie mają tych obciążeń. Najlepsze wyjście to odtruwać je wcześnie, podczas gdy wciąż korzystają z zalet wspierającego je środowiska.

Jest jeszcze jeden bardzo dobry powód przemawiający za wczesnym odtruwaniem dzieci. Podczas procesu dojrzewania, również seksualnego i doświadczania wieku młodzieńczego, duże ilości hormonów działają na organizmy dzieci i powodują istotne zmiany. W szczególności, w szybkim tempie rosną i zmieniają się mózgi dzieci. W tym czasie wiele wcześniejszych problemów z uczeniem się czy zachowaniem znika. Jeżeli odtrujesz swoje dziecko ZANIM ten proces się zakończy, jest większa szansa, że osiągnie ono stan normalnego, rozsądnego, dobrze zachowującego się nastolatka. Jeżeli NIE odtrujesz dziecka, może rozwinąć w sobie NOWE problemy z zachowaniem w okresie dojrzewania, a trudniej jest opanować i kontrolować nastolatków niż małe dzieci. Nie przeocz tej szansy przez zbyteczne oczekiwanie!

Najbardziej oczywistą różnicą w aspekcie biochemii u dzieci i dorosłych jest to, że dzieci nie wytwarzają ani nie używają hormonów steroidowych (hormony nadnerczy i hormony płciowe) podczas wczesnych etapów swego życia. Te hormony mają również wpływ na wzrost aż do osiągnięcia wzrostu dorosłego człowieka. Z tego powodu przy leczeniu dzieci najlepiej jest unikać jakichkolwiek hormonów steroidowych, jeżeli jest to możliwe. Zalicza się do nich pregnenolon, DHEA, kortyzol, glukokortykoidy, estrogeny, androgeny, androstenedione, testosteron itp. Nie używaj ich, o ile nie jest to absolutnie konieczne.

Najistotniejszym problemem hormonalnym u dzieci jest niedobór hormonów tarczycowych. Ciche, niemrawe, słabe dzieci, które wolno rosną mają z dużym prawdopodobieństwem obniżone funkcje tarczycy o ile są też inne przesłanki, aby podejrzewać, że są zatrute rtęcią. Jeżeli do tego moczą się w nocy albo w dzień do bardzo późnego wieku, należy przypuszczać, że ich przysadka nie funkcjonuje prawidłowo i trzeba to leczyć, ale badanie TSH jest bezużyteczne dla ustalenia leczenia i jego późniejszego monitorowania.

Inne różnice są następujące: dzieci zużywają więcej pożywienia w stosunku do swojej wagi i dlatego mogą korzystać z większej dawki suplementów niż sugerowałaby to ich waga; żelazo jest dla dzieci bardziej toksyczne niż dla dorosłych i nie należy go używać chyba że są wyraźne wskazania; metabolizm dzieci jest szybszy, więc substancje podawane w małych częstych dawkach, powinny być dawane częściej niż u dorosłych jeżeli dziecko wyraźnie ma z tym jakiś problem; układ odpornościowy u dzieci jest o wiele bardziej aktywny niż u dorosłych; aminokwas arginina jest niezwykle istotny dla dzieci.

DMSA zostało w szczególny sposób zatwierdzone do użytku leczniczego u dzieci zatrutych ołowiem. Jest bezpieczne dla dzieci. W technicznym sensie DMSA zostało zatwierdzone tylko do użytku na dzieciach – stosowanie go przez dorosłych jest „kontrowersyjne”. Należy stosować DMSA u dzieci zatrutych metalami. Po to ten lek został stworzony.

Jeśli masz dziecko i chcesz je odtruć, znajdź lekarza, który naprawdę chce pomóc wyzdrowieć chorym dzieciom i ma otwarty umysł, zamiast takiego, który wybrał pediatrię bo miło jest spotykać z niemalże zdrowymi dziećmi i za bardzo się nimi nie przejmować. Taki lekarz nie musi być pediatrą. Rzadko napotkasz na pediatrę czy lekarza rodzinnego, który poprowadzi Cię przez cały, tak skomplikowany projekt i nie będzie chciał Cię odesłać gdzieś – gdziekolwiek – bo ciężko mu wymyślić, co zrobić dalej.

Rtęć i inne metale ciężkie mają wpływ na emocje. Marlowe dowiódł, że dzieci zaburzone emocjonalnie mają zwiększony poziom rtęci i ołowiu. Zwracaj uwagę na to, jak się czuje Twoje dziecko. Wielu dorosłych z trudnością przyjmuje to, że dziecko może być poważnie zaburzone emocjonalnie i samo sobie z tym nie poradzi. Zdarza się to często przy zatruciu rtęcią. Dzieci nie mają tej dojrzałości, żeby radzić sobie z emocjami. Musisz im w tym pomóc. Naucz się rozmawiać z dzieckiem o jego emocjach, bądź otwarty i akceptuj tak, aby nie wyrobić w nich nawyku mówienia Ci tego, co chcesz usłyszeć i uwierz w to, co dziecko Ci mówi.

Rtęć zaburza działanie nerwu trójdzielnego i może powodować problemy z widzeniem. Jako, że oftalmolodzy (lekarze, którzy zajmują się operacjami oka) nie wiedzą, jak szukać takich zaburzeń i czym one dokładnie są, często są one pomijane i diagnozowane jako deficyty uwagi czy dysleksja. Można to wyleczyć terapią optometryczną, po zakończeniu odtrucia. Ta terapia powinna być wykonana przez optometrę a nie oftalmologa, wówczas bardziej prawdopodobny jest pozytywny jej skutek. Jeżeli po tej terapii jest regres, oznacza to, że trzeba kontynuować odtrucie.

Zwiększona ilość rtęci odpowiada też poziomowi inteligencji w dzieciństwie (Marlowe et al., 1986). Jako, że inteligencja odpowiada za sukces w szkole, w kręgach towarzyskich, w pracy i w ogóle w życiu, sensownym jest odtruwanie dzieci tak wcześnie, jak to możliwe, aby nie musiały nadrabiać zbyt wiele, gdy powrócą im funkcje mózgu. Nie wiadomo, czy zewnętrznie spowodowane deficyty w inteligencji podczas lat dzieciństwa, prowadzą do trwałych deficytów, których nie da się później nadrobić.

Szansa, aby Twoje dziecko było mądrzejsze, zdrowsze, bardziej stabilne emocjonalne i nadgoniło swoje problemy poprzez naturalną ścieżkę rozwoju, warta jest wykorzystania.

Zwykle więcej niż jeden członek rodziny jest zatruty rtęcią. W tym przypadku lepiej nie opóźniać odtruwania wszystkich. Jeżeli oboje dorośli są zatruci, najlepiej aby to zdrowsze opóźniło odtruwanie albo zaczęło bardzo powoli, podczas gdy pozostały dorosły i dzieci mogą odtruwać się szybciej.

 

 

 

 

 

 

Fizjologiczne efekty zatrucia rtęcią

Fizjologiczne efekty zatrucia rtęcią

na podstawie “Amalgam Illness” A. Cutlera:

Są to ogólne uwagi na temat tego, jak rtęć może wpływać na metabolizm. Mają charakter ogólny tak, aby ludzie mogli wiedzieć, co może się z nimi dziać podczas długiego okresu detoksykacji. Jest to ogólny KONSPEKT, którego zadaniem jest krótko WSPOMNIEĆ i POUKŁADAĆ pewne rzeczy.

 

MÓZG

Przewlekłe zatrucie rtęcią dotyka podwzgórza, a za jego pośrednictwem układu hormonalnego, nastroju, uczucia głodu, pamięci, autonomicznego układu nerwowego, tętna, pocenia się, regulacji temperatury i rytmu dobowego. W poważniejszych przypadkach przysadka może również ucierpieć i obniżone są poziomy hormonów, które produkuje.

Nerw trójdzielny, który kontroluje większość mięśni oka również pada ofiarą zatrucia.

Zmysły:

Wzrok – nadwrażliwość na światło, problemy ze skupieniem wzroku, problemy ze zbieżnością obu gałek ocznych na jednym przedmiocie, problemy ze śledzeniem przedmiotu wzrokiem. Upośledzona wrażliwość na kolory.

Powonienie – zaburzone.

Smak – zaburzony

Słuch – uczucie dzwonienia w uszach, problemy w rozumieniu słów i w wyszczególnianiu dźwięków z hałasu.

Zmysł równowagi – wyjątkowo zaburzony.

Emocje – emocje zmieniają się i są jakby spłycone. Prowadzi to do problemów w stosunkach międzyludzkich, niestałość w uczuciach, problemy z zaufaniem innym, podatność na niewinne uwagi, trudność w rozumieniu prawdziwych intencji ludzkich, nieśmiałość, wycofanie i wyjątkowe marnowanie czasu.

Intelekt – powolniejszy, problemy z pamięcią. Największe z pamięcią krótkotrwałą, prowadzą do poczucia mentalnego wyobcowania.

Dopamina jest podwyższona, a receptor dopaminowy D2 jest również stymulowany przez rtęć. Można oczekiwać reakcji podobnych do schizofrenicznych. Wydzielanie TSH przez przysadkę jest nadmiernie stymulowane i może przez jakiś czas nadrobić obniżoną funkcję tarczycy.

Hormony – centralna kontrola nad funkcjami hormonalnymi jest zaburzona (np. CRH i przez to ACTH i przez to kortyzol obniżają się w odpowiedzi na stres zamiast się zwiększać). Zaburzona jest regulacja ciepłoty ciała. Głód nie odpowiada fizjologicznym potrzebom. Może wystąpić nadmierne oddawanie moczu z powodu niskiej wazopresyny.

Autonomiczny system nerwowy – nieodpowiednie pocenie się albo jego brak, zimne dłonie i stopy i ewentualnym mrowieniem i brakiem czucia, przyspieszone tętno itp.

 

UKŁAD ENDOKRYNOLOGICZNY

Rtęć koncentruje się selektywnie w wybranych tkankach układu endokrynalnego i nerwowego.

Tarczyca – jest dotknięta bezpośrednią koncentracją rtęci, prowadzi to do redukcji syntezy PgI2 (jest to cząsteczka sygnalizująca wykorzystywana przez tarczycę). Stymulacja receptora dopaminowego D2 obniża odpowiedź TSH na TRH. Zaburzona jest także konwersja T4 do T3. Jako, że przysadka używa do tej konwersji własnych enzymów, TSH może być w normie mimo występowania niedoczynności tarczycy, którą można jednak zdiagnozować na podstawie fizycznych objawów.

Nadnercza – są dotknięte zarówno bezpośrednią koncentracją rtęci, redukcją syntezy PgI2 oraz zaburzeniami syntezy steroidów. Osoby z niedoczynnością nadnerczy będą miały obniżone ciśnienie krwi. Osoby z paradoksalną reakcją nadnerczy na stres ale wysokim średnim poziomem kortyzolu mają normalne albo wysokie ciśnienie krwi, ale źle reagują na stres. W niedoborze hormonów nadnerczy, zwiększa się wrażliwość na ból oraz zmysły zapachu, dotyku i smaku.

Gonady – dotknięte zmniejszonym wydzielaniem LH/FSH przez nadnercza oraz bezpośrednią koncentracją rtęci, jak również zaburzeniem syntezy steroidów. Androgeny mają wpływ na układ odpornościowy, u kobiet niemal połowa androgenów tworzy się w nadnerczach w odpowiedzi na ACTH więc kobiety z niedoczynnością nadnerczy będą miały niedobór androgenów.

Hormony nadnerczy i gonad są tworzone z cholesterolu i kłopoty mogą być większe, jeżeli poziom cholesterolu jest zbyt niski z powodu problemów z wątrobą.

Trzustka – częste niedobory enzymów trawiennych, co może prowadzić do alergii pokarmowych, złego wchłaniania itp. Problemy w metabolizmie insuliny i glukagonu mogą doprowadzić do hiperglikemii, hipoglikemii, reaktywnej hipoglikemii itp. jak również do przybierania na wadze u niektórych.

 

INTERAKCJE ENDOKRYNOLOGICZNE

Niskie poziomy hormonów tarczycowych prowadzą do obniżonego kortyzolu i nadmiernej reakcji ACTH na stymulatory. W połączeniu z tym, że podczas stresu poziom ACTH spada, postaje ogromna trudność w regulacji rytmu dobowego oraz zaburzeń w funkcjonowaniu – pojawiają się nieoczekiwane cudowne osiągnięcia, a tuż za nimi spektakularne porażki albo nie podejmowanie wyzwań.

Niska funkcja nadnerczy może też obniżyć produkcję hormonów tarczycy, prawdopodobnie z powodu braku receptorów beta-adrenergicznych, które tworzą się w odpowiedzi na kortyzol.

Gdy poziomy hormonów tarczycowych rosną, zwiększa się poziom kortyzolu we krwi i zapotrzebowanie na kortyzol. A zatem przy niedoborze hormonów zajęcie się w pierwszej kolejności albo wyłącznie tarczycą, może pogorszyć funkcje nadnerczy.

Kortyzol zwiększa beta-adrenergiczną wrażliwość wszystkich tkanek. Zwiększa się tętno, lipidy są wypuszczane z komórek tłuszczowych, aminokwasy z mięśni a cukier we krwi – z wątroby.

Kortyzol powoduje, że produkowany jest enzym glutaminosyntetaza, który jest niezbędny do usunięcia amoniaku z mózgu.

Hormony tarczycy zwiększają wrażliwość na katecholaminy, jak również wrażliwość beta-adrenergiczną. Zwiększają one też tempo produkcji neuroprzekaźników.

Hormon wzrostu zwiększa konwersję T4 do T3, aktywnej formy hormonów tarczycowych.

Betabloker propanolol zmniejsza konwersję T4 do T3. Zwiększona wrażliwość beta-adrenergiczna (np. od kortyzolu, tarczycy) zwiększa konwersję T4 do T3. Leki na astmę zwiększają również tę konwersję.

Karbamazepina zwiększa konwersję T4 do T3.

Trzeba o tym pamiętać, aby zrozumieć reakcje jednostki na zatrucie rtęcią i zrozumieć, że podczas terapii hormonalnej mogą mieć miejsce nieprzewidywalne i liczne zmiany.

 

ORGANY

Wątroba – zaburzony metabolizm fazy 1 i 2 pożywienia i leków. Może to skutkować zapaleniem i uszkodzeniem wątroby, jak również zatruciem przez niewłaściwie metabolizowane substancje.

Serce – redukcja zawartości koenzymu Q10 prowadzi do obniżonej produkcji i wykorzystania energii. Zwiększony poziom rodników prowadzi do arteriosklerozy, Może to doprowadzić do zwiększonego ryzyka chorób serca.

Układ pokarmowy – rtęć ma na niego ogromny wpływ. Nagłe zatrucie prowadzi do koncentracji rtęci w tkankach układu pokarmowego i może prowadzić do problemów z trawieniem, złego wchłaniania, przerostu grzybów itp.

Złe wchłanianie – ma konsekwencje dla całego układu. Może być problem z doborem suplementacji. Objawem złego wchłaniania jest niski poziom trójglicerydów i cholesterolu.

Przepuszczalne („cieknące” jelito – powoduje nadwrażliwość odpornościową na składniki pożywienia.

Mięśnie – mogą być osłabione z powodu złej funkcji nadnerczy i złego wchłaniania. Przy hipoglikemii białka z mięśni mogą być mobilizowane aby zapewnić energię dla organizmu. Kortyzol jest niezbędny aby te białka zostały rozłożone, więc osoby ze słabymi nadnerczami są zwykle chude, słabe, choć wydają się umięśnionymi.

Tkanka łączna – jest ofiarą niektórych problemów autoimmunologicznych powodowanych przez rtęć, jak reumatyzm, toczeń itp.

Skóra – zwykle jest sucha podatna na infekcje i zapalenie z powodu oksydacji membran komórkowych. Niedoczynność tarczycy też powoduje, że skóra jest słaba i cienka. Zwiększony kortyzol też osłabia skórę.

Płuca – w pierwszej fazie zatrucia powszechne są częste infekcje płuc z powodu upośledzenia układu odpornościowego. Zmiana funkcji cząsteczek sygnalizujących może doprowadzić do astmy. Niski progesteron może również powodować duszności.

Układ krążenia – może pojawić się arterioskleroza

Krew – rtęć zaburza utlenienie czerwonych krwinek, co po części reguluje epinefryna. Rtęć wpływa też na krzepliwość krwi prowadząc do krwotoków i łatwego sinienia skóry.

 

SYGNAŁY MIĘDZYKOMÓRKOWE

Nadmierne nadtlenki lipidów zaburzają formowanie się PgI2, która jest wykorzystywana przez nadnercza i tarczycę aby produkować hormony jako zapotrzebowanie na konkretne sygnały. Te dwa organy będą zatem bardziej zaburzone niż inne. PgI2 pomaga też w naprawianiu szkód powodowanych przez udary i zawały, więc zredukowany poziom PgI2 zwiększa ryzyko tychże. PgI2 ma wpływ na przepustowość naczyń krwionośnych, redukuje ciśnienie krwi jest częścią systemu kontroli ciśnienia krwi.

Rtęć stymuluje receptory dopaminowe D2, który ma wpływ na zaburzenia psychotyczne. Ta stymulacja może powodować zmiany emocjonalne związane z zatruciem rtęcią. Obniża też funkcje przysadki.

Ta nadmierna stymulacja powoduje bóle głowy, zwiększony apetyt i problemy z brzuchem (dopamina sygnalizuje, że żołądek jest pełen). Organizm radzi sobie z tym obniżając funkcję receptora albo obniżając ilość dopaminy.

Osoby, u których dochodzi do obniżenia funkcji receptora potrzebują dużej ilości różnych bodźców do stymulacji aby funkcjonować, muszą przyjmować suplementy w dużych ilościach i stopniowo z nich rezygnować.

Osoby, u których dochodzi do obniżenia ilości dopaminy, stają się alergiczne i wrażliwe na wszystko, muszą zaczynać od malutkich dawek suplementów i powoli je zwiększać.

Kiedy to wszystko się dzieje, rozchwiane są poziomy TSH i prolaktyny.

Rtęć bezpośrednio wpływa na enzym tworzący drugi przekaźnik – cykliczne AMP, które przenosi sygnały między komórkami przynajmniej w połowie szlaków. Powoduje to zredukowaną i płytszą odpowiedź na stymulację.

Redukując niezbędne kwasy tłuszczowe w membranach komórkowych rtęć redukuje ilość tkanki dostępnej do wytworzenia prostaglandyn, leukotrienów itp., czyli ważnych cząsteczek pozapalnych i antyzapalnych. Prostaglandyny kontrolują reakcje mięśni. Brak równowagi między różnymi rodzajami prostaglandyn prowadzi do fibromialgii. Prostaglandyny odpowiedzialne są też za zwiększenie temperatury ciała przy gorączce, a ich brak ma miejsce w niektórych przypadkach schizofrenii, a zatem niski poziom kwasów tłuszczowych może doprowadzić do zmniejszonej temperatury ciała i zachowań podobnych do schizofrenii.

Poziomy acetylocholiny są zredukowane (prawdopodobnie przez stymulację receptorów D2). Powoduje to problem w poruszaniu się (używaniu mięśni), obniżenie tętna, funkcji pamięci i kojarzenia (leki cholinergiczne pomagają przy chorobie Alzheimera), regulacji wydzielania śluzu i regulowaniu źrenicy oka.

Odpowiedzią niektórych osób na zmniejszony poziom acetylocholiny jest podwyższone regulowanie aktywności receptorów muskarynowych M1. Sprawia to, że dany receptor jest w wystarczający sposób wrażliwy nawet na małe ilości pozostałej acetylocholiny i może funkcjonować. Takie osoby nie będą reagowały na leki zwiększające poziom acetylocholiny jak DMAE. Zwykle duże korzyści przyniesie im przyjmowanie metylowanych substancji takich jak SAMe. Tiamina odwrażliwia receptory M1 i sprawia, że są w równowadze z innymi receptorami. Jedną z funkcji receptorów M1 jest powstrzymanie pocenia się, więc takie osoby nie będą się pocić. Powoduje ona też uwalnianie się kwasu arachidonowego, więc takie osoby będą miały wysokie poziomy leukotrienów i pozapalnych prostaglandyn. Kwas arachidonowy z kolei zwiększa poziomy acetylocholiny, więc te osoby wpadają w pętlę, która sprawia że są nadwrażliwe. Mają zwykle liczne nadwrażliwości na substancje chemiczne i działają na nie suplementy w ekstremalnie niskich dawkach.

Metabolizm dopaminy, epinefryny i norepinefryny zwykle jest zaburzony w jakiś sposób, co powoduje problemy emocjonalne i somatyczne. Kobiety i mężczyźni w różny sposób zużywają norepinefrynę i ta różnica może odpowiadać za przewagę niepokoju i lęków u kobiet zatrutych rtęcią.

Metabolizm tryptofanu również może być zaburzony, a poziomy serotoniny i melatoniny nienormalnie wysokie albo niskie.

Dotknięta jest również synteza steroidów, zmiana dotyczy stosunku między poszczególnymi steroidami, które biorą udział w procesach rozumienia i w zmianach nastroju, jak również kontrolują anabolizm, katabolizm i drugorzędne cechy płciowe.

Rtęć powoduje przyspieszenie wchłaniania glukozy, co prowadzi do hipoglikemii i przybierania na wadze. Wydaje się, że skorygować to może suplementacja chromem.

 

MITOCHONDRIA

Działanie rtęci na mitochondria nie jest dobrze zbadane. Wydaje się jednak, że przewlekłe zatrucie rtęcią dotyka mitochondriów i hamuje ich zdolność do prawidłowej fosforylacji adekwatnej do potrzeb organizmu. Częściowo ma na to wpływ ogólne zatrucie, a częściowo zatrucie konkretnych szlaków, które stają się wrażliwe na niektóre składniki diety (np. tłuszcze utwardzone), a częściowo jest to też efekt nieefektywnego systemu komunikacji międzykomórkowej.

 

PATOLOGIE NA POZIOMIE CZĄSTECZKOWYM

Transport i metabolizm glukozy (cukru we krwi) jest zaburzony przez szereg mechanizmów.

Zaburzony jest proces tworzenia się ATP.

Nadmiernie szybko dochodzi do oksydacji niezbędnych kwasów tłuszczowych.

Cholesterol na początku jest podwyższony a potem opada.

Zaburzone są procesy wykorzystywania wielu witamin, co prowadzi do zwiększonych potrzeb w zakresie suplementacji.

Konwersja hormonu tarczycowego t4 do jego aktywnej formy t3 jest zaburzona bo enzym, który uczestniczy w tej przemianie w swojej aktywnej części posiada selen. Rtęć ma wyjątkowo wysoką skłonność do selenu. Niektóre tkanki wykorzystują krążące w organizmie t3 a niektóre wytwarzają swoje własne, więc może dojść do niedoczynności tarczycy pomimo normalnych poziomów t3 w krwi.

Synteza porfiryn jest zaburzona, co prowadzi do tego, że ciało nie produkuje wystarczającej ilości hemoglobiny dla krwinek czerwonych, enzymów wytwarzających energię w mitochondriach i enzymów detoksykujących substancje chemiczne w wątrobie.

Zaburzony jest metabolizm fazy 1 i 2 w wątrobie. Przyspieszona faza 1 prowadzi do nadwrażliwości na substancje chemiczne. W połączeniu ze spowolnieniem fazy 2 nadwrażliwości te są jeszcze bardziej intensywne.

Aminokwasy – poziomy ich w osoczu mogą różnić się od spodziewanych. Rtęć może mieć wpływ na końcowe produkty przemian metabolicznych, które zużywają niektóre aminokwasy, Tauryna może być zbyt wysoka albo zbyt niska (zbyt niska prowadzi do poczucia niepokoju, jak również zmniejszonego wydzielania żółci co ma wpływ na trawienie i stan nerek). Fenylalamina i tyrozyna mogą również być obniżone albo zbyt wysokie, co ma wpływ na melaninę, hormony tarczycowe oraz neuroprzekaźniki – dopaminę, norepinefrynę i epinefrynę. Tryptofan może być podwyższony lub obniżony, co ma wpływ na melatoninę i serotoninę. Glutamina może być obniżona, co powoduje „szalone myśli”. Histydyna może być obniżona, co prowadzi do obniżenia histaminy, co u niektórych osób prowadzi do psychotycznych myśli i oznacza dodatkowo, że reakcje systemu odpornościowego na stan zapalny będą zaburzone, co doprowadzi do przewlekłej aktywacji niektórych składników systemu odpornościowego. Wysoka histamina może prowadzić do zwiększonego stanu zapalnego, anafilaksji oraz do myśli psychotycznych. Niski poziom GABA może prowadzić do podenerwowania i problemów ze snem. GABA zwiększa dopaminę. W tym kontekście „wysokie” i „niskie” należy interpretować w relacji do zakresów pozostałych aminokwasów, a nie wyłącznie w kontekście norm dla danego aminokwasu. Należy pamiętać, że w sensie biochemicznym każdy z nas się różni, a organizmy niektórych osób mogą być w równowadze przy wyjątkowo wysokim/niskim poziomie danego aminokwasu – ale u większości ludzi tak nie jest i jeżeli kilka wskaźników jest zaburzonych, na pewno coś jest nie tak.

Zaburzona jest gospodarka minerałami. Pojawia się hipomagnezemia, hipo- lub hiperkalemia i czasem hiponatremia.

Mobilizacja i odkładanie się tłuszczy – rtęć może bezpośrednio wpływać na oba te procesy, hamując tworzenie się cAMP oraz pośrednio przez stymulację receptorów insuliny. Niektóre osoby zatrute rtęcią łatwo przybierają na wadze na rozsądnych dietach. Mogą występować u nich przy tym normalne poziomy hormonów nadnerczy.

Zahamowanie aktywności enzymów – wiele z nich działa gorzej z uwagi na zatrucie. Jest to jądro wszystkich procesów patologicznych. Zaburza fundamentalne chemiczne szlaki, do których wymagane są różne enzymy. Dlatego efekt działania rtęci na daną osobę różni się, bo zależy od wrażliwości specyficznych alleli każdych z tych enzymów, które zależą od konstrukcji genetycznej danej osoby.

Często zaburzona jest oksydaza siarczynów i inne podobne enzymy. Może to prowadzić do nadwrażliwości na siarczyny, reakcje na jedzenie zawierające siarkę, jak również sprawić, że dla metabolizmu fazy 2 nie będzie dostępna wystarczająca ilość siarczanów.

System cytochromu P450 – serce metabolicznych procesów fazy 1, fosforylacji oraz biosyntezy steroidów. Rtęć hamuje działanie różnych enzymów tego systemu w różnym zakresie.

Dioksygenaza cysternowa jest jednym z enzymów CYP450, które tworzą hipotaurynę (a w konsekwencji taurynę) z cysteiny. Rtęć hamuje działanie tego enzymu, co prowadzi do niskich poziomów tauryny i konieczności jej suplementowania, jak również do wysokich poziomów tauryny, co musi podlegać ścisłej dietetycznej kontroli.

Tauryna podnosi poziom dopaminy, co podnosi poziom insuliny i może spowodować reaktywną hipoglikemię.

Rtęć hamuje działanie kilkunastu enzymów, które metabolizują acetylocholinę.

Metyzacja jest często hamowana przez rtęć. Jest odpowiedzialna za utrzymywanie w równowadze tłuszczy i cholesterolu, jak również za wiele innych reakcji biochemicznych. Metyzację można przyspieszyć kwasem foliowym (5-MTHF), witaminami B6 i B12 oraz metylowanymi suplementami. Metionina to naturalna substancja metylowana, ale u osób z podwyższoną cysteiną metionina musi być ograniczana, gdyż przez homocysteinę jest ona metabolizowana do cysteiny. Cholina, trójmetylglicyna (TMG) itp. to też metylowane substancje i mogą być substytutem metioniny. Podwyższona homocysteina z powodu wchłaniania metioniny z pożywienia bez przyjmowania innych metylowanych suplementów i przy zablokowanym metabolizmie cysteiny – może doprowadzić do szybszego powstania arteriosklerozy.

Szlak neuroprzekaźników katecholaminowych wygląda następująco:  epinefryna. Konwersjaà norepinefryna à dopamina à tyrozyna àfenylalanina  norepinefryny do epinefryny wymaga metyzacji.

à serotonina à 5-hydroksytryptofan (5HTP) àTryptofan  melatonina to szlak metaboliczny tych neuroprzekaźników.

Rtęć selektywnie katalizuje oksydację membran komórkowych. Niszczy to niezbędne kwasy tłuszczowe i substancje tworzące membrany jak fosfatydyloserina i fosfatydylocholina. Ta zmiana w składnikach membran zaburza sygnalizację międzykomórkową, funkcje komórek, sprawia że są ona bardziej podatne na stres oksydacyjny i umożliwia inne patologiczne procesy. Niedobór fosfatydyloseriny w szczególności zaburza pamięć krótkotrwałą i prowadzi do depresji.

 

UKŁAD ODPORNOŚCIOWY

Rtęć przy nagłym zatruciu, a nawet i rok po zatruciu, może w takim stopniu zaburzać działanie układu odpornościowego, że prowadzić to będzie do powtarzających się infekcji dróg oddechowych itp.

Rtęć zmienia stosunek wspomagających limfocytów T do supresyjnych limfocytów T i wzmaga wrażliwość na antygeny, a tym samym rozwój alergii.

Rtęć zaburza odporność komórkową, a zatem wirusy nie są zabijane i infekcje wirusowe są przewlekłe. Ilość komórek NK jest zmniejszona, a to właśnie te komórki walczą z nowotworami, zatem rtęć zwiększa podatność na zachorowanie na nowotwory.

Rtęć zmienia proporcje różnych przeciwciał. Może wystąpić nadprodukcja przeciwciał jakiejś klasy i niedobór innych przeciwciał (zwykle niedobór dotyczy IgG 1 i 3 oraz sIgA) co prowadzi do podatności na różne infekcje.

na podstawie: Czy plomby amalgamatowe są bezpieczne dla ludzi? Opinia komitetu naukowego Komisji Europejskiej, Joachim Mutter:

Toksyczność rtęci

Rtęć jest 10 razy bardziej toksyczna od ołowiu, co wykazały badania in vitro [88-90]. Rtęć jest najbardziej toksycznym nie-radioaktywnym pierwiastkiem. Opary rtęci to jedna z najbardziej toksycznych form rtęci na równi z rtęcią organiczną. O tej nadzwyczajnej toksyczności rtęci świadczą następujące okoliczności:

a) Rtęć jest jedynym metalem, który w temperaturze pokojowej jest gazem bardzo łatwo absorbowanym przez układ oddechowy (80%).

b) Opary rtęci z amalgamatów wnikają do tkanek bardzo łatwo z uwagi na monopolarową konfigurację atomową.

c) Wewnątrz komórek opary są oksydowane do Hg2+, bardzo toksycznej formy rtęci, która wiąże się ściśle z grupami tiolowymi różnych protein, uniemożliwiając ich aktywność biologiczną.

d) Hg2+ jest bardziej toksyczna niż Pb2+, kadm (Cd2+) I inne metale, bo ma większą retencyjność w ciele z uwagi na silną więź z grupami tiulowymi (cysternami w białkach), co powoduje nieodwracalne zahamowanie ich aktywności. Inne metale tworzą odwracalne więzi z proteinami i są dlatego mniej toksyczne.

e) Hg2+ nie wiąże się wystarczająco ściśle z grupami węglowymi naturalnych kwasów organicznych aby zapobiec jej toksyczności.

f) Chelatory takie jak EDTA, które normalnie powstrzymują efekty działania metali ciężkich jak ołów, nie mają takiego oddziaływania na toksyczność rtęci, a mogą nawet I ją zwiększać [91,92]. Inne chelatory (DMPS i DMSA) hamują toksyczne efekty Cd2+ i Pb2+, ale nie Hg2+ [93]. DMPS, DMSA albo naturalne środki jak witamina C, glutation czy kwas alfa-liponowy nie usuwają rtęci z układu nerwowego [94]. (tu niestety autor nie uwzględnił specyficznej farmakokinetyki ALA, dokładne wyliczenia na ten temat dostępne w „Amalgam Illness” A. Cutler). DMPS albo DMSA mogą nawet zwiększać hamujące działanie Hg2+ i Cd2+ na enzymy, co nie dotyczy Pb2+ [95]. Co więcej, DMPS u zwierząt doprowadziło do zwiększenia stężenia rtęci w rdzeniu kręgowym [96].

Toksyczność rtęci metylowanej, która znajduje się w rybach wygląda na niższą (tylko około 1/20) niż rtęci metylowanej wykorzystywanej w eksperymentach [97].

Ponadto, ryby morskie są bogatym źródłem selenu i kwasów tłuszczowych omega-3, które chronią przed toksycznością rtęci. Niezależnie od tego chlorek rtęci metylowanej, który jest bardziej toksyczny niż rtęć metylowana z ryb, był mniej neurotoksyczny dla rozwijających się układów nerwowych in vivo niż opary rtęci [98].

Badania Drascha et al. pokazują podobne korelacje: Społeczność poszukiwaczy złota, poddana ekspozycji na opary rtęci, wykazywała znacząco więcej objawów zatrucia rtęcią niż grupa kontrolna, która była poddana ekspozycji na rtęć metylowaną z ryb, pomimo że poziomy rtęci we włosach i osoczu były wyższe w porównaniu do osób poddanych ekspozycji na opary rtęci [65,66]. Inne badania wskazują też na mniejszą neurotoksyczność rtęci metylowanej z ryb, w porównaniu do jatrogennych źródeł rtęci (amalgamat, tiomersal) [46]. Tutaj, w przeciwieństwie do ilości plomb amalgamatowych u matek, nie ma korelacji pomiędzy jedzeniem ryb przez matki w ciąży i ryzykiem autyzmu u dzieci.

Podsumowując, opary rtęci z amalgamatów albo rtęć metylowana pochodząca z amalgamatów mają pełen potencjał toksyczny. Z drugiej strony rtęć metylowana w rybach już weszła w więź z proteinami w rybach albo innymi ochronnymi cząsteczkami w rybach takich jak glutation i selen, w które ryby są bogate. Co więcej, nowsze badania potwierdzają, że większość osób z plombami amalgamatowymi jest narażonych na toksyczne poziomy rtęci [99,100].

Synergistyczna toksyczność rtęci i ołowiu (Pb)

 

Niektórzy naukowcy próbują polemizować, twierdząc że wyniki otrzymane drogą analizy zwierząt lub komórek są przeszacowane i nieporównywalne do stanu ludzkiego organizmu. Jednakże w przeciwieństwie do zwierząt wykorzystywanych w eksperymentach, ludzie poddani są stałej ekspozycji na różne inne toksyny, a zatem ich efekty sumują się, a nawet są synergistyczne [101,102]. Na przykład udowodniono, że kombinacja śmiertelnej dawki 1% rtęci (LD1Hg) wraz z dawką śmiertelną LD1 ołowiu (Pb) skutkuje śmiercią wszystkich zwierząt, więc można sformułować następujące równanie toksykologiczne: LD1 (Hg) + LD1 (Pb) = LD 100 [101].

W tym kontekście trzeba sobie uzmysłowić, że nowoczesny człowiek ma więcej rtęci i około 1000 razy więcej ołowiu w tkankach ciała niż człowiek starożytny.

W innych eksperymentach dodanie tlenku glinu (zwykle jest on w szczepionkach), antybiotyków, tiomersalu (bywa w szczepionkach) i testosteronu zwiększyło toksyczność rtęci [108,109]. Synergistyczna toksyczność testosteronu wyjaśnia, dlaczego o wiele więcej mężczyzn niż kobiet cierpi na autyzm  czy stwardnienie boczne zanikowe.

 Genotoksyczność, stress oksydacyjny, nowotwór

Plomby amalgamatowe powodują uszkodzenie DNA w komórkach krwi u człowieka. [115] Nawet niskie poziomy rtęci nieorganicznej prowadzą do znaczącego uszkodzenia DNA w komórkach ludzkich tkanek i limfocytach [116]. Ten efekt, który wywołuje raka, został stwierdzony u osób z poziomem rtęci poniżej tego, który normalnie wywołuje cytotoksyczność i śmierć komórkową . Ponadto aberracje chromosomów mogą być spowodowane prze działanie amalgamatu na kultury komórkowe [117]. Osoby mające amalgamaty mają wyższe markery stresu oksydacyjnego w ślinie [118,119] i krwi [120,121]. Wzrost stresu oksydacyjnego koreluje z ilością plomb. Poziomy rtęci obserwowane normalnie w tkankach osób z amalgamatami prowadzą do zwiększonego stresu oksydacyjnego i redukcji poziomów glutationu, co powoduje uszkodzenia komórek [33,34]. Znacząco podniesione poziomy rtęci zaobserwowano też w tkankach nowotworu piersi [122]. Rtęć odłożona w tkankach wiąże się zwykle z selenem, co oznacza, że selen nie jest już dostępny dla organizmu. Amalgamaty mogą dlatego wzmagać deficyt selenu, zwykle w krajach, gdzie poziom selenu jest niedostateczny (np. Europie Środkowej) [123,124].

 Odporność na antybiotyki

Udowodniono, że rtęć z plomb amalgamatowych może wywoływać odporność na rtęć u bakterii [125-127]. To prowadzi do ogólnej odporności na antybiotyki bakterii w jamie ustnej i w innych miejscach [127], co jest szczególnie prawdziwe w sytuacji, kiedy geny odpowiedzialne za odporność na antybiotyki są zawarte w tym samym operonie odporności na rtęć [128,129]. Odporność na rtęć jest powszechna u bakterii jamy ustnej człowieka [130,131]. Małpy z amalgamatami miały więcej bakterii odpornych na antybiotyki stwierdzonych w kale [127,132].

 Penetracja szczęki i kości jarzmowej przez amalgamaty

Eksperymenty na małpach i owcach wykazały, że rtęć z amalgamatów łatwo penetruje korzenie zębów i kości szczęki [25,26]. Fakt, że stwierdzono to też u ludzi [133] potwierdza alternatywną drogę ekspozycji na rtęć spowodowaną przez amalgamaty.

 Skóra

Jest korelacja między atopowym zapaleniem skóry, poziomami IgE i obciążeniem rtęcią [134]. Plomby amalgamatowe mogą powodować liszaje [135-139]. W ponad 90% przypadków te zmiany ustąpiły po usunięciu rtęci, niezależnie od tego, czy wyniki alergologiczne były nadal pozytywne. Poprawiła się również granulomatoza [140]. Inne formy zapalenia skóry wydają się być powiązane z amalgamatami [141,142].

 Zaburzenia autoimmunologiczne i nadwrażliwość na rtęć

Stała ekspozycja na rtęć w małych dawkach, powszechna u osób z amalgamatami, jest możliwym źródłem niektórych chorób autoimmunologicznych, np. stwardnienia rozsianego, artretyzmu czy tocznia rumieniowatego układowego [135,143-152]. Te efekty pojawiają się przy ekspozycji poniżej bezpiecznych limitów dla rtęci [153]. Ostatnie badania wykazały, że rtęć i rtęć etylowana na bardzo niskich poziomach mają zdolność hamowania pierwszego kroku (fagocytozy) wrodzonej  odpowiedzi immunologicznej u ludzi [154]. To pokazuje, że ekspozycja na rtęć poniżej średniej ekspozycji może powodować zaburzenia układu odpornościowego u osób w różnym wieku.

 Tylko “rzadkie przypadki dowiedzionych reakcji alergicznych”?

Udowodniono, że u ponad 90% przypadków, u których stwierdzono reakcje błony śluzowej, te zmiany wyleczyły się po usunięciu amalgamatów, niezależnie od wyników testu skórnego [137,139,140]. Dlatego waga testów skórnych w wykrywaniu nadwrażliwości czy alergii na rtęć w jamie ustnej bez kontaktu rtęci ze skórą, jest kwestionowana [155].

Wyniki innych wiarygodnych badań potwierdzają, że immunologiczne problemy spowodowane amalgamatami są częstsze niż “rzadkie przypadki” [148,150,152,156-162].

Może być też korelacja między atopowym zapaleniem skóry, poziomami IgE i obciążeniem organizmu rtęcią, której nie wykażą testy skórne [134].

Z uwagi na fakt, że rtęć z amalgamatów matki jest jednym z głównych źródeł rtęci u płodu I noworodka, poporodowe atopowe zapalenie skóry znika po odtruciu dzieci z rtęci [163].

 Choroby serca

Rtęć może powodować nadciśnienie i zawał mięśnia sercowego[164].

Znaczące kumulacje rtęci (22,000 razy wyższe niż w grupie kontrolnej) ujawniono w tkance serca dotkniętego niewydolnością [165].

 Układ moczowy

W eksperymentach na zwierzętach stwierdzono upośledzenie funkcji kanalików moczowych z powodu plomb amalgamatowych [23,146,167]. Ludzie z amalgamatami wykazują więcej objawów uszkodzenia układu moczowego niż osoby bez tych plomb [15]. Często wymieniane badanie dzieci ujawniło pierwsze oznaki uszkodenia nerek (mikroalbuminuria) [168] nawet po 5 latach od ekspozycji na amalgamaty.

 Choroba Alzheimera (AD)

Badania wykazały, że rtęć odgrywa ogromną rolę w patogenezie choroby Alzheimera [108,109,169,170]. Nowa systemowa analiza literatury pod tym kątem wykazała znaczący związek [124].

 Choroba Parkinsona (PD)

Metale ciężkie podejrzewane są od dawna jako podłoże PD, wiele badań pokazuje ten związek, w tym badania epidemiologiczne [171-180]. Rtęć pierwiastkowa powoduje PD [175] i w badaniach przypadku wykazano, że stan chorego wyraźnie poprawił się po terapii chelatacyjnej [173] i pozostał niepogorszony podczas kolejnego okresu 5-letniego [173]. W  innych badaniach stwierdzono znacząco podwyższone poziomy rtęci we krwi u 13 z 14 pacjentów z PD w porówaniu do grup kontrolnych [172]. To jest zgodne z wnioskiem poprzednich badań, które ujawniły związek między poziomami rtęci we krwi i PD [176]. Inne badania ujawniły znacząco wyższą ekspozycję na amalgamaty u osób z PD w porównaniu do  grup kontrolnych [179].

 Efekty uboczne u personelu dentystycznego?

Dentyści pracujący z amalgamatami mają zwiększoną ekspozycję na rtęć [17,181,182]. W większości dostępnych badań ta ekspozycja w klinikach dentystycznych powodowała znaczące efekty zdrowotne u dentystów. W niektórych badaniach, obraz kliniczny nie był skorelowany z poziomem rtęci w moczu czy krwi, więc niektórzy badacze fałszywie przyjęli, że rtęć nie była powodem tych reakcji. Jednakże, nie jest to wniosek zgodny z prawidłami nauki, gdyż poziomy rtęci w moczu oraz krwi nie odpowiadają poziomom w tkankach (patrz powyżej). Lindbohm et al. (2007) ujawnili dwukrotnie wyższe ryzyko poronień poprzez zawodową ekspozycję na rtęć (OR 2,0; 95% CI 1,0- 4,1). Ten efekt ekspozycji na rtęć był silniejszy niż efekt ekspozycji na substancje akrylowe, dezynfekujące czy rozpuszczalniki [199].

Nawet w 30 lat po ekspozycji na rtęć, pielęgniarki stomatologiczne miały znaczące problemy zdrowotne [200]. Pomimo faktu, że 85% dentystów i techników stomatologicznych wykazało zmiany odpowiadające toksyczności rtęci zarówno w parameytrach biologicznych, jak i behawioralnych, a 15% wykazało zwiększony poziom deficytów neurologicznych z polimorfizmem genu CPOX4 [186,188,201], SCENIHR wciąż utrzymuje, że amalgamaty nie powodują znaczących problemów zdrowotnych u dentystów, bo poziomy rtęci we krwi oraz moczu są poniżej „bezpiecznych limitów “.

 Bezpłodność

Asystentki dentystów poddane ekspozycji na amalgamat wykazały wyższy wskaźnik bezpłodności [198]. Kobiety z dużą ilością plomb albo zwiększonym poziomem rtęci w moczu (po podaniu DMPS) miały wyższy wskaźnik bezpłodności [202-204]. Detoksykacja metali ciężkich doprowadziła do spontanicznego zachodzenia w ciążę u znacznej ilości bezpłodnych pacjentów [203]. Ekspozycja na rtęć doprowadziła do zmniejszonej płodności mężczyzn [205-207]. Studium norweskie, często cytowane jako dowód, że ekspozycja na rtęć w klinikach dentystycznych nie powoduje bezpłodności, obarczone jest metodologicznymi błędami, gdyż uwzględniono w nim tylko kobiety, które urodziły już przynajmniej jedno dziecko. Kobiety bezdzietne zostały wykluczone. Takie studium oczywiście nie może odpowiedzieć na pytanie, czy praca z amalgamatami prowadzi do bezpłodności, czy nie. Co więcej nie wyliczono czasu ekspozycji na amalgamat i nie uwzględniony on został jako zmienna w studium.

 Stwardnienie rozsiane (MS)

W płynie mózgowo-rdzeniowym pacjentów z MS ujawniono 7,5 razy zwiększony poziom rtęci [208]. Ciężko nie spekulować, czy obecność rtęci w takiej ilości przynajmniej nie wpływa na zaostrzenie problemów powiązanych z MS albo inną chorobą neurologiczną. Częstotliwość MS jest skorelowana z częstotliwością próchnicy [209,210] i amalgamatów [211,212]. Kilkanaście przypadków MS spowodowane zostało ostrym zatruciem oparami rtęci czy ołowiu [213]. U zwierząt rtęć nieorganiczna spowodowała utratę komórek Schwanna, które budują osłonki mielinowe i stabilizują aksony [214]. Patogeneza autoimmunologiczna, w tym przeciwciała przeciwko podstawowemu białku mielinowemu (MBP), może być sprowokowana przez rtęć i inne metale ciężkie [148].

Pacjenci MS, u których usunięto plomby amalgamatowe, rzadziej cierpieli na depresję, agresję, było mniej zachowań psychotycznych i kompulsywnych w porównawniu do pacjentów z amalgamatami [215]. Mieli też niższe poziomy rtęci we krwi [216]. Po usunięciu amalgamatu, patologiczne prążki oligoklonalne w płynie mózgowo-rdzeniowym zniknęły u pacjentów z MS [217]. Usunięcie amalgamatów doprowadziło do wyleczenia dużej ilości pacjentów z MS [147]. Retrospektywne studium 20.000 żołnierzy wykazało znacznie większe ryzyko MS u osób z amalgamatami [218]. To ryzyko było niedoszacowane, bo grupa badawcza wybrana drogą badań medycznych składała się z osób o dobrym zdrowiu w trakcie zaciągu do wojska [218]. Inny problem pojawiający się w niektórych badaniach to brak dokumentacji dentystycznej sprzed czasu rozwoju MS. Pomimo tych ograniczeń [219] powtórna analiza ujawniła 3,9 razy większe ryzyko MS u osób z amalgamatami w porównaniu do osób  bez amalgamatów. Niedawny przegląd badań dowiódł także, że istnieje zwiększone ryzyko MS spowodowanego przez amalgamaty gdyż większość badań nie była oparta na właściwej grupie kontrolnej bez amalgamatów [220].

 Stwardnienie zanikowe boczne (ALS)

Opary rtęci są absorbowane przez neurony motoryczne [221] co prowadzi do zwiększonego stresu oksydacyjnego. W eksperymentach wykazano, że opary rtęci powodują choroby neuronów motorycznych, takie jak [222-226]. Udowodniono, że rtęć zwiększa toksyczność glutaminianu, która jest czynnikiem przy ALS. Badania przypadków wykazały korelację pomiędzy przypadkową ekspozycją na rtęć a ALS [227,228]. Doniesiono o przypadku Szwedki, która miała ponad 34 amalgamaty i cierpiała na ALS. Po usunięciu tych plomb, wyzdrowiała [229]. Retrospektywne stadium ujawniło statystycznie znaczący związek między większą ilością amalgamatów i ryzykiem chorób neuronów motorycznych [218].

 ”Choroba amalgamatowa” i wskaźniki wrażliwości

Pomiędzy najczęściej zgłaszanymi objawami choroby amalgamatowej są: chroniczne zmęczenie, bole głowy, migreny, zwiększona podatność na infekcje, ból mięśni, brak koncentracji, zaburzenia trawienia, zaburzenia snu, słaba pamięć, bóle stawów, depresje, zaburzenia pracy serca, rozregulowanie układu wegetatywnego, zaburzenia nastroju i inne [161,215,216,230-234].

Do niedawna nie było możliwe rozróżnienie pomiędzy osobami „wrażliwymi na amalgamaty” i „odpornymi na amalgamaty” poprzez zmierzenie poziomów rtęci w ich krwi czy moczu albo testy skórne [9,21]. Jednakże udowodniono, że niektóre osoby mogą reagować na test skórny zaburzeniami psychopatycznymi, chociaż nie było alergicznej reakcji na skórze [235]. Dodatkowo granulocyty neutrofilowe u osób podatnych na amalgamaty reagowały inaczej niż u osób odpornych [236], jak również ujawniono różną aktywność dysmutazy nadtlenkowej [237].