9. Notatki z międzynarodowej konferencji nt. autyzmu – Berlin, 2011 rok

Organizator: Autismus ursachengerecht behandeln e.V.

Termin:8-9 października 2011 r.

Prelegenci: dr William Shaw (Great Plains, USA), dr Leiticia Dominguez-Shaw (LINCA, USA), Lori Knowles (matka dziecka wyleczonego z autyzmu, USA), dr Brigitte Esser (lekarz DAN, Niemcy)

Notatki z poszczególnych wykładów:

1. Dr William Shaw, Wieloczynnikowe podłoże autyzmu, część 1: predyspozycje genetyczne, odmienności mikroflory, szczawiany, alergie pokarmowe i środowiskowe, deficyty litu

Na początku wykładu dr Shaw zaznaczył, że istnieją dwa poglądy na temat autyzmu:  -  – pierwszy z nich postrzega autyzm jako zaburzenie wyłącznie genetyczne, a w konsekwencji jedyne, co można w takim wypadku zrobić to zastosować terapie behawioralną i neurofarmaceutyki
- drugi z nich widzi autyzm jako zaburzenie systemowe, gdzie mózg i inne organy są dotknięte obciążeniami pochodzącymi z ekspozycji na toksyny, niedobory żywieniowe, obciążenia pochodzące ze szczepionek, dysfunkcje układu pokarmowego, alergie pokarmowe, przy czym oczywiście istnieje podatność genetyczna na tego typu obciążenia

W Great Plains Laboratory przebadano dokładnie 200.000 dzieci z autyzmem i jedynie w 12 przypadkach autyzm spowodowały zaburzenia genetyczne, więc z pewnością NIE JEST TO pierwszoplanowa przyczyna autyzmu. Przyjmując zatem drugi z ww. poglądów należy:
- usunąć toksyczne chemikalia z organizmu dziecka
- przywrócić prawidłowy stan odżywienia organizmu (co wymaga czasem podania dużych ilości substancji odżywczych)
- przywrócić „dobrą” florę jelitową
- usunąć szkodliwe pokarmy
- a przy tym oczywiście stosować terapię, której potrzeby dr Shaw nie neguje.

W pierwszej części wykładu dr Shaw skupił się na dysbiozie jelit, nadmiarze szczawianów oraz alergiach pokarmowych i wziewnych.

Odnośnie dysbiozy jelit, to spowodowana jest ona zespołem cieknącego jelita, który często objawia się słabym apetytem u dzieci albo preferowaniem przez nie płynnego pożywienia, gdyż pokarm stały drażni śluzówkę jelita (brak apetytu może być też objawem niedoboru cynku). Dr Shaw badając mocz dzieci z autyzmem stwierdził u niemal każdego z nich (mówił o ok. 80%) podwyższone następujące kwasy (nie będę ich tłumaczyć, bo w Organic Acid Test też są po angielsku i po co robić zamieszanie z tłumaczeniem): citramalic, 5-hydroxymethyl-2-furoic, 3-oxoglutaric, furn-2,5-dicarbolixyc, tartaric, furancarbonylglicyne i arabinose. Po podaniu leków przeciwgrzybicznych te wskaźniki znacznie się zmniejszyły (pokazywane były dokładne tabelki odnośnie każdego z etapów tej terapii), zwiększył się jedynie 3-hydroxypropionic, co zaciekawiło dr Shawa i jego zespół. Dotarli do artykułu z prasy medycznej z 1956 roku, gdzie wykazano, że pacjenci chorzy psychicznie (z różnego rodzaju chorobami) wydzielali w moczu ogromne ilości 3-hydroxypropionic (HPHPA). Badania prowadzone w Great Plains wykazały, że jest to metabolit bakterii Clostridia. Dr Shaw pokazał ciekawy wykres, z którego wynikało, że Clostridia produkuje substancję analogiczną do dopaminy, przez co uniemożliwia przemianę dopaminy w norepinefrynę, stąd u tak wielu dzieci z autyzmem nierównowaga HVA do VMA (HVA to metabolit dopaminy, a VMA to metabolit epinefryny, powinny się równoważyć, gdy jest uniemożliwiona ta przemiana, to w organizmie jest za wysokie HVA i za dużo dopaminy). Dr Shaw zwrócił uwagę na to, że leki stosowane zwyczajowo w autyzmie – risperidol, haloperol – służą obniżeniu dopaminy i większość osób leczonych w ten sposób na pewno odnotowałoby większą poprawę dzięki leczeniu Clostridii niż podawaniu tych leków.
Istnieje około 100 gatunków Clostridii. Walka z nią jest ciężka i nawet wybicie clostridii nie przynosi długotrwałych rezultatów, o ile nie są podawane duże dawki probiotyków, gdyż zarodniki clostridii zasiedlają jelito tuż po zaprzestaniu podawania antybiotyków. Clostridia umiera podczas ekspozycji na tlen, w jej leczeniu pomocne są duże dawki Lactobacillus GG (czyli Dicoflor albo Culturelle), Tricycline, Metronidazol (10-14 dni), Vancomycin (10-14 dni), Saccharomycces boulardii. Co bardzo ciekawe, HPHPA wstrzyknięte szczurom spowodowało u nich stereotypowe zachowania – machanie głową, otrzepywanie całego ciała, hiperaktywność, a do tego przez ponad 80% czasu chodziły do tyłu zamiast do przodu. Jeżeli zatem dziecko robi wszystko odwrotnie, „nie słucha się”, „jest niegrzeczne” – można podejrzewać clostridię. Nadto produkowany przez clostridię phenylpropionic acid zmienia receptory opioidowe w mózgu tak, że mózg nie może ich wyłączyć i osoba nie reaguje dobrze na świat zewnętrzny.

Następnie omówiono krótko kwestię wysokich szczawianów. Szczawiany to substancja, z których zbudowane są kamienie w nerkach, ale kryształki szczawianów mogą osadzać się w sercu, mózgu, oku (pokazywano zdjęcia szczawianów wbudowanych w tkankę ciała i wyglądało to okropnie). Są to jakby małe ostre kryształki. Wiążą się z metalami ciężkimi i mają też wpływ na odkładanie tych metali w tkankach ciała. Jeżeli występuje problem szczawianów, konieczna jest dieta niskoszczawianowa (wykluczamy soję, szpinak, wszystkie orzechy, cytrynę, rabarbar, słodkie ziemniaki, pieprz, czekoladę, por, kawę rozpuszczalną, czarną herbatę), podawanie dużych dawek B6 (100 mg), wapnia (1000 mg w mniejszych dawkach, przed posiłkami), a także probiotyków VSL3, które mają zdolności do rozbijania szczawianów. O szczawianach było jeszcze podczas późniejszych wykładów.

Nietolerancje pokarmowe dr Shaw omówił krótko, skupiając się na mleku i jego szkodliwości – badania wykazały, że młodociani przestępcy piją więcej mleka, a gdy odstawiono mleko dzieciakom w zakładach poprawczych, odnotowano znaczne uspokojenie się dzieci (były dwa badania, które to wykazały, spisałam sobie autorów i miejsca publikacji bo ciekawe).

Podsumowując – w Great Plains Lab po przebadaniu 200.000 (mniej więcej oczywiście) dzieci z autyzmem stwierdzono, że nietolerancja glutenu i kazeiny dotyczy 90% z nich, candida – 70%, clostridia – 50%, problem ze szczawianami – 80%. Stąd te tematy właśnie poruszył dr Shaw w pierwszym wystąpieniu.

2. Dr Leticia Dominguez – Shaw, Żywienie i jego związek z zaburzeniami zachowania i uczenia się u dzieci

Dr Leticia Dominguez-Shaw (szefowa LINCA – ogólnoamerykańskiej organizacji zajmującej się żywieniem dzieci autystycznych, prywatnie żona dr Shaw, mają córkę z autyzmem i zespołem Retta) zaczęła od wykładu na temat peptydów, czyli kazomorfiny i gliadomorfiny i ich opioidalnych efektów. Dziecko uzależnia się od tych peptydów, dlatego tak bardzo chce spożywać pokarmy z glutenem i kazeiną i niemal wszystkie osoby które przychodzą po pomoc do LINCA twierdzą, że nie mogą wprowadzić diety, bo ich dzieci jedzą tylko bułki i mleko. Robią to dlatego, bo są od nich uzależnione. Efekty działań peptydów dotykają działania wszystkich zmysłów:
- dotyk – dyskomfort przy myciu zębów i włosów, też przy czesaniu włosów i obcinaniu paznokci, nadwrażliwość na metki przy ubraniach, chodzenie na palcach, autoagresja, wybieranie ubioru nieodpowiedniego do temperatury
- słuch – nadwrażliwość, zatykanie uszu rękami, napady histerii w głośnych miejscach, ale: słuchanie radia czy TV przy dużej głośności
- węch/smak – dzieci wąchają wszystko, liżą swoje ręce, wkładają przedmioty do buzi, nie drażnią ich brzydkie zapachy, niektóre powodują u nich histerie, jedzą tylko określone rodzaje pożywienia
- wzrok – nadwrażliwość, częste patrzenie przez okno, oglądanie TV bardzo blisko
Dieta bezglutenowa i bezmleczna polega na tym, że:
- odstawiamy mleko (też kozie) i wszystkie pochodne mleka, zastępując je mlekiem z migdałów, orzechów czy ryżu albo kokosa
- odstawiamy gluten (i soję) i redukujemy węglowodany złożone
- podajemy: kukurydzę, ryż, amarantu, cassavę, sorghum, substytuty mleka, ziemniaki, kakao albo karob, mięso, warzywa, owoce, orzechy, stewię, xylitol i syrop z agawy (z tych trzech najbardziej polecana była stewia)
- uwzględniamy indywidualne alergie żywieniowe – najlepiej zbadać je PRZED przejściem na dietę i uwzględnić przy planowaniu diety, żeby nie trzeba było po zbadaniu alergii po raz kolejny „odbierać” dziecku jakieś pożywienie, ale żeby zrobić to raz a dobrze. Na dietę powinna przejść cała rodzina, każdy skorzysta, a poza tym wszyscy mamy podobne podłoże genetyczne jak dziecko z autyzmem, więc możemy mieć podobne problemy z żywieniem. Trzeba zawsze mieć pod ręką bezglutenowe ciastka, pieczywo, pizzę itp – szczególnie przy wizytach u znajomych. Trzeba dobrze wyjaśnić kwestię diety rodzeństwu.
Ważnym jest ograniczenie skrobii w pożywieniu (w zasadzie to jej wyeliminowanie). Ukryte źródła skrobii to:
- skrobia modyfikowana
- hydrolizowane białko warzywne
- miso
- sos teriyaki
- skrobia w suplementach, które podajemy dziecku
- barwnik karmelowy
- ocet
- dekstryny
- zupy w paczce czy puszce
- trzeba sprawdzić czy do mleka ryżowego nie dodali jęczmienia
Ważne jest unikanie sytuacji, gdy przygotowujemy posiłki dziecku z użyciem tych samych naczyń i sztućców co posiłku z zawartością glutenu – nawet małe okruchy na desce do krojenia czy na łyżce albo nożu mogą być problemem.
Warto używać enzymów trawiennych w dawce zależnej od ilości pożywienia (o enzymach było też w dalszych wykładach).
Reguła 3xP: aby zacząć dietę trzeba być: przekonanym (na 100%), dobrze poinformowanym (trzeba przeczytać wszystko co się da i przebadać dziecko na nietolerancje pokarmowe, żeby wiedzieć od początku co eliminujemy) i przygotowanym (kupujemy wszystkie produkty, zakładamy notatnik gdzie opisujemy, co dziecko zjadło i jak się zachowywało w danym dniu).
Barwniki spożywcze – używamy tylko naturalnych: kurkuma, chlorofil, ryboflawina a nie sztucznych, które dezaktywują niektóre enzymy (szczególnie amylazę i trypsynę) i zwielokrotniają szkodliwy efekt peptydów opioidalnych.
KONIECZNIE eliminujemy glutaminian sodu, jest bardzo neurotoksyczny.
Na początku wprowadzenia diety możliwy jest krótki regres, pogorszenie zachowania (jak na odwyku), gdy trwa on dłużej niż 3 tygodnie – szukamy możliwych alergenów (eliminujemy np. kukurydzę, ryż) – dlatego lepiej zrobić test na nietolerancje pokarmowe wcześniej, żeby od razu wyeliminować wszystko. Najlepiej wszystko zapisywać i nakręcać filmy z udziałem dziecka – regularnie. Zacznij dodawać nowe potrawy zanim wyeliminujesz te szkodliwe (np. mleko – zacznij dolewać mleko ryżowe do normalnego najpierw w proporcji np. 1:2, potem 1:1, potem 2:1 a ostatecznie podawaj samo ryżowe). Planuj posiłki.
Dr Dominguez-Shaw zachęcała również do zakupu organicznego jedzenia. Podała listę pokarmów najbardziej zanieczyszczonych pestycydami: jabłka, brzoskwinie, seler, jagody, sałata, gruszki, szpinak, ziemniaki, papryka, nektarynki i najmniej: cebula, awokado, kiwi, kapusta, brokuły, cukinia, szparagi, mango, ananas, kukurydza – jeśli nie stać cię na kupowanie samych organicznych owoców i warzyw, wybieraj produkty z drugiej listy. Warto też skontaktować się z producentem organicznych warzyw i owoców i dokładnie wypytać, jak uprawia swoje rośliny i czy na pewno nie stosuje żadnych pestycydów i tego typu środków.

3.Dr William Shaw, Wieloczynnikowe podłoże autyzmu, część 2: niedobór cholesterolu i metale ciężkie

1.   CHOLESTEROLIstnieje taki zespół genetyczny nazwany SLOS, który charakteryzuje się tym, że chory ma bardzo niski cholesterol (niższy niż 4.14 mmol/l). Pacjenci mają przy tym objawy ze spektrum autyzmu: opóźniony rozwój mowy, zaburzenia behawioralne, nadwrażliwość na światło. Charakterystyczne przy tym zespole jest to, że drugi i trzeci palec u stopy jest zrośnięty w kształt litery Y. Charakterystyczne są również rysy twarzy – krótki nos, mały podbródek, fałdy wokół oczu.
Naukowcy z Great Plains Lab poszli tym tropem i stwierdzili, że około 60% dzieci z autyzmem ma bardzo niski cholesterol (niższy niż 4.14 mmol/l) – ten odsetek w porównaniu z grupą kontrolną jest aż 7 razy większy u dzieci z autyzmem.
Każdy rodzaj pożywienia (tłuszcze, białka, węglowodany) transformuje się w organizmie w acetyl koenzym A, następnie w lanosterol, 7-dehydrocholesterol, a na koniec w cholesterol. Cholesterol jest niezbędny dla wytwarzania żółci w wątrobie, dla trawienia tłuszczy i absorpcji witamin. Jest niezbędny do produkcji wszystkich hormonów (estrogenu, testosterony, kortyzolu, aldosteronu). Ma jednak też duży wpływ na mózg:
- aktywuje proteinę-G niezbędną dla działania receptoru serotoninowego 1a
- aktywuje receptory oksytocynowe – oksytocyna odpowiada za potrzebę połączenia się z drugim człowiekiem, za miłość i przyjaźń, za więzi międzyludzkie, za chęć bycia z innymi – dlatego wydzielana jest przez rodziców po urodzeniu dziecka i również podczas seksu, badania C. Modahla z 1998 roku wykazały, że poziom oksytocyny u autystów jest znacznie niższy. Oksytocyna dostępna jest w sprayu (w Europie na receptę) albo w tabletkach zażywanych raz dziennie (produkuje ją Belmar Pharmacy w USA). Dr Shaw z ciekawości raz spróbował ją zażyć i potwierdza, że zażycie oksytocyny powoduje chęć bycia z innymi, większe pragnienie towarzystwa, łatwość w kontaktach z innymi ludźmi – 30 niezależnych badań potwierdziło, że podawanie oksytocyny prowadzi do trwałych pozytywnych zmian w mózgu w obszarach odpowiedzialnych za kontakty społeczne, co potwierdziły obrazy rezonansu magnetycznego. Receptory oksytocynowe są nieaktywne bez cholesterolu
- aktywuje proteinę nazwaną bardzo zabawnie, bo na cześć postaci z gry komputerowej – proteinę „sonic hedgehog” (SHH) – odpowiada za pamięć, kojarzenie i ogólnie lepszą pracę mózgu
- cholesterol jest składnikiem osłonki mielinowej na neuronach
Dieta naszych dzieci jest uboga w cholesterol, zwykle nie jedzą za dużo smalcu czy jajek (najczęściej są na nie uczulone). Jest cholesterol w suplemencie, wytworzony z owczej wełny, nazywa się to „Sonic Cholesterol” i jest produkowany przez New Beginnings Nutritional, jest do nabycia choćby w cenaverde.
Jak obliczyć dawkę cholesterolu? Badamy cholesterol dziecka (oczywiście na czczo), odejmujemy tę wartość (podaną w mmol/l) od 4.14, wynik dzielimy przez 0,26. Powinna wyjść cyfra między 1-7 i to jest ilość jajek, jakie trzeba dziennie zjeść aby podwyższyć cholesterol do właściwego poziomu. Jedna kapsułka „Sonic Cholesterol” odpowiada ilości cholesterolu w 1 jajku. Po 3 miesiącach trzeba powtórzyć badanie. U dzieci, którym podawano cholesterol, już odnotowano znaczącą poprawę w kojarzeniu, myśleniu i kontaktach społecznych2.   ZATRUCIE METALAMI CIĘŻKIMI

Już trochę nie starczyło na to czasu, ale generalnie najczulszym testem na zatrucie metalami wg dr Shaw jest badanie włosa, negatywnie wypowiadał się o jakości badania uroporfiryn wykonywanego przez laboratorium we Francji (wprost powiedział, ze są to badania niedokładne, próbki nie są właściwie zabezpieczone i jest to badanie kompletnie niewiarygodne) i powiedział, że chelatacja jest wyjątkowo bezpieczną interwencją o ile przeprowadzana we właściwy sposób.

3.   NIEDOBÓR LITU

Na to niestety też nie starczyło czasu, ale pokazywano ciekawe wykresy – mniej autystów było w czasach, gdy pito wodę z kranu zawierającą lit, wraz ze wzrostem spożycia wody w butelkach wzrosła ilość autystów. Bardzo dobre efekty przynosi suplementacja litem u osób dorosłych chorych na choroby neurodegeneracyjne – podawanie 1000 mcg litu dziennie osobie o wadze 70 kg przywraca funkcje uszkodzonych komórek układu nerwowego. Dla dziecka o wadze 17,5 kg dawka litu na dzień to 250 mcg.

4. Lori Knowles, Droga Daniela z autyzmu – opowieść matki

Mały Daniel Knowles został zdiagnozowany jako autysta w wieku 2,5 roku. Matka pokazywała na konferencji filmy – Daniel nie reagował na świat zewnętrzny, bawił się stereotypowo, ślinił się, miał zaburzenia sensoryczne. Pierwsza zmiana była po wprowadzeniu diety bezglutenowej i bezkazeinowej, następnie wprowadzono suplementy mające na celu:
- wyrównanie niedoborów żywieniowych
- lepsze wchłanianie składników odżywczych
- poprawę metabolizmu
- pomoc w detoksykacji
- niwelowanie skutków stresu oksydacyjnego
- poprawę ogólnego stanu zdrowia
Lori stosowała witaminy, minerały, antyoksydanty, kwasy tłuszczowe (olej z wątroby dorsza), probiotyki i enzymy – szerzej mówiła o nich w swoim drugim wykładzie.
Daniel miał wszelkie objawy niedoboru kwasów tłuszczowych (suchą skórę i włosy, ciągłe pragnienie, niekontrolowanie potrzeb fizjologicznych, przewlekły katar, łupież, cienkie paznokcie, egzemy, nadaktywność, częste oddawanie moczu) i olej z wątroby dorsza przyniósł ogromny skutek.    Miał też oczywiście przerost bakterii i grzybów
Interwencją, która przyniosła największy skutek i wyleczenie dziecka była chelatacja według protokołu Cutlera. Lori podawała DMSA co 4 godziny przez 3 dni, potem było 11 dni przerwy. Było coś co nazwała „cudem co drugiego wtorku” – w każdy wtorek po chelatacji był nowy ogromny postęp u Daniela. UWAGA – zaczęła i skończyła na dawce 25 mg (!) nie zwiększając jej ani nie zmniejszając. Nie stosowała ALA. Pokazywała filmy z aktualnym zachowaniem syna – kompletnie normalne dziecko. Nie jest już na diecie (był na niej 10 lat), bierze podstawowe suplementy (multiwitaminę, probiotyki, tran) w dawkach jak dla normalnego dziecka w jego wieku. Lori mówiła, że problemy zdrowotne u autystów można przyrównać do pinezek na których dziecko siedzi – każdy problem to jakby jedna pinezka. Dlatego nigdy w zasadzie nie wystarczy jedna interwencja – wprowadza dietę i wyjmujesz jakby jedną pinezkę, ale zostaje ich kilka i dziecko nadal ma dyskomfort, wprowadzasz kwasy tłuszczowe, suplementy ale nadal coś zostaje i dopiero jak wprowadzisz tę ostatnią interwencję (w ich przypadku chelatację) – dziecko zdrowieje. Droga Daniela z autyzmu trwała 4 lata, w wieku 6,5 roku został uznany za zdrowe dziecko. Lori podkreślała, że nie zawsze pełne wyleczenie jest możliwe ale warto poprawić jakość życia dziecka maksymalnie jak się da. To samo mówiła Leticia – jej córka z zespołem Retta nigdy nie będzie w pełni zdrowa, ale dziewczynki z tym zespołem zwykle nie poruszają się inaczej jak na wózku, ich jakość życia jest słaba – a jej córka ma 21 lat, studiuje, biega, ćwiczy – pokazywała jej zdjęcia – i żyje bardzo fajnym życiem.
Aby do tego doprowadzić rodzic musi być – zdeterminowany, w ciągły sposób szukać, czytać, badać i doinformowywać się i zadbać o siebie (o właściwą dietę, suplementację własnego organizmu, o własne zdrowie).

 5. Brigitte Esser – Biomedyczne podłoże autyzmuDr Esser krótko przedstawiła, w jaki sposób zbiera informacje pozwalające jej na określenie kierunków leczenia dziecka:
- wywiad obejmujący: historię chorób w rodzinie (alergie, choroby autoimmunologiczne itd.), okres ciąży (leki, szczepienia, długie podróże, leczenie stomatologiczne, ekspozycja na toksyny, stres, dieta, choroby), poród (sposób porodu, czy była narkoza albo leki, czy w terminie, stan dziecka, leczenie dziecka), okres wczesnodziecięcy (karmienie piersią, szczepienia, nabywanie umiejętności komunikacyjnych, kontakty społeczne, problemy z układem pokarmowym, infekcje, sen, nietolerancje pokarmowe, zaburzenia sensoryczne, problemy z poruszaniem się)
- objawy u dziecka dotyczące następujących kwestii:
- przewód pokarmowy – śluz w kale, zapach, kolor, konsystencja, niestrawione resztki pokarmu w kale, zaburzenia snu, krzyki bez powodu, samouszkodzenia, częste kładzenie się na brzuchu, dolegliwości występują zwykle po jedzeniu
- system odpornościowy – częste infekcje albo ich brak, infekcje przewodu pokarmowego, astma, egzema, alergie
- autonomiczny system nerwowy – zwiększone tętno i ciśnienie krwi, adaptacja wzroku do światła, poszerzone źrenice, pocenie się, sucha skóra i oczy, nagłe czerwienienie się, zaburzenia temperatury, zaburzone odczuwanie bólu, zaburzenia snu, wzdęcia, biegunki, zatwardzenia
- obciążenie metalami  ciężkimi – bóle głowy, bezsenność, hiperaktywność, stymulacje, obniżone napięcie mięśniowe, alergie, zatwardzenia
- niedobory minerałów – zły apetyt, zaburzenia smaku, powolne leczenie ran, częste infekcje, lekki sen, biegunki, wypadanie włosów, trądzik, słabe paznokcie – to są objawy niedoboru cynku (o wszystkich minerałach nie było czasu mówić)
- badanie dziecka w celu stwierdzenia takich objawów jak: słaby wzrost, wzdęcia, zredukowana masa mięśniowa, egzema, łupież, stan zapalny kącików ust, stan zapalny powiek, grzybice skóry, czerwona skóra wokół odbytu, grzybica języka i paznokci, popękana skóra opuszków palców (możliwe zakażenie streptococcus), cienie pod oczami (problemy z wątrobą, alergie), skolioza, zrośnięte palce u stóp (syndrom SLOS), cechy twarzy pod kątem kruchego X
- diagnostyka laboratoryjna – morfologia z rozmazem, badanie wątroby i nerek, poziom elektrolitów, organic acid test, test na peptydy, całościowe badanie kału, nietolerancje pokarmowe, poziom aminokwasów w moczu, analiza włosa

6. Dr William Shaw – Możliwości diagnostyczne przy autyzmie i podobnych zaburzeniach

Dr Shaw przedstawił co może być odpowiedzialne za różne objawy u autystów. Wszystkie te parametry można zbadać w organic acid test oraz przez inne testy (profil cholesterolowy, badanie włosa, badanie ferrytyny, kompleksowe badanie kału, nietolerancje pokarmowe, aminokwasy, kwasy tłuszczowe, przeciwciała na strep, poziom witaminy D):
- zaburzenia snu – niedobór melatoniny lub żelaza
- ból oczu, częste dotykanie oczu – ciężki niedobór wapnia (szczawiany tworzą się w oczach)
- nadaktywność, głupawi – candida, zatrucie ołowiem
- dziecko wyobcowane, brak reakcji na otoczenie – opiaty z mleka i glutenu
- autoagresja – ból w przewodzie pokarmowym
- częste wydalanie małych ilości moczu, problem z odpieluchowaniem – nadmierny poziom szczawianów
- kładzenie się na brzuchu – dyskomfort w przewodzie pokarmowym
- chodzenie na palcach – możliwy problem ze szczawianami, niedobór selenu
- ślinienie się – objaw zatrucia rtęcią
- agresywne zachowanie – przerost clostridii
- patrzenie pod kątem – niedobór witaminy A
- zaburzenie równowagi cynku i miedzi – objaw zatrucia rtęcią (duża ilość wolnej miedzi i żelaza niszczy witaminę C)
- nadmierne picie i sikanie, sucha skóra i włosy, łupież, małe krostki na udach i ramionach – niedobór kwasów tłuszczowych, dzieci z autyzmem mają za mało kwasów omega-3 (średnio o 20% mniej niż zdrowi rówieśnicy)
- halucynacje wzrokowe – nadmiar kwasów tłuszczowych (aby temu zapobiec i aby je organizm właściwie przyswoił, kwasy tłuszczowe podajemy zawsze z 250-500 mg karnityny)
- zachowania kompulsywno-obsesyjne – zespół PANDAS czyli zakażenie bakteriami Strep – jest u 44,8% autystów, bada się nie tylko odczyn ASO ale też antiDNAseB

Dr Shaw podał minimalne dawki minerałów dla dzieci z autyzmem w podziale na grupy wiekowe: 1-4 lat – 800 mg wapnia, 100 mg magnezu, 2,5 mg cynku ; 5-10 lat – 800-1000 mg wapnia, 200 mg magnezu, 5 mg cynku, powyżej 10 lat – 800-1200 mg wapnia, 350-450 mg magnezu, 15 mg cynku. To jest absolutne minimum.
Badanie aminokwasów jest też bardzo przydatne. Pełnią one kluczową rolę przy produkcji energii, metabolizmu tłuszczów i ketonów, z nich tworzą się proteiny i hormony, przekształcane są w cukier/glukozę. W tym kontekście dr Shaw omówił cykl mocznikowy i podał, że grzyby, bakterie, niektóre aminokwasy produkują amoniak, który przemienia się w carbonyl phosphate (też nie będę tłumaczyć bo to są parametry badane w Urinary AminoAcids), a następnie powinno to się w wątrobie w cyklu mocznikowym przekonwertować w mocznik i w ten sposób amoniak zostaje wydalony. Jak coś tu nie gra, to carbonyl phosphate zmienia się w orotic acid i w pyrimidynes. Wskaźnikami tego, że cykl mocznikowy jest zaburzony jest zatem: podwyższony amoniak, orotic acid, pyrimidines jak również alanine i glutamine a obniżony poziom mocznika. Nadmiar amoniaku jest toksyczny i powoduje takie objawy jak:
- tiki, senność (aż do śpiączki i śmierci), objawy psychiczne, anoreksję, schizofrenię
- wolny wzrost, nudności, zaburzenia behawioralne, trudności z percepcją, ból głowy, preferowanie diety wegetariańskiej
Jeżeli w badaniu większość aminokwasów jest podwyższona może to też świadczyć o defekcie nerek i zatruciu metalami ciężkimi. Jeżeli większość jest obniżona – może to świadczyć o słabym trawieniu, niewystarczającej ilości kwasów żołądkowych, małej podaży białka w diecie, złym wchłanianiu, dysbiozie jelit.
Potem dr Shaw krótko przybliżył kwestię kwasu chinolinowego i przestrzegł przed podawaniem dziecku tryptofanu, który karmi bakterie i candidę. Zamiast tego, w celu obniżenia kwasu chinolinowego podajemy B3 i 5HTP. Wysoki kwas chinolinowy świadczy o przestymulowaniu układu odpornościowego, też o wysokim kortyzolu. Pozostałe ekscytotoksyny to glutaminian (glutamate) – wówczas podajemy wysokie dawki B6 i aspartam (aspartate).

7. Brigitte Esser – Toksyczne obciążenie organizmu

- w 1930 roku produkowano 1 mln ton chemikaliów na świecie, teraz jest to 400 mln
- istnieje 100.000 różnych chemikaliów, zbadano dokładnie tylko 4%
- w mleku matki jest około 300 chemicznych substancji
- aktualnie dzieci są dużo bardziej obciążone niż ich rodzice i dziadkowie
- badając cząsteczki kurzu znaleziono w nich: ftalany, bisfenol A, kadm, ołów, rtęć (z żarówek)
- bardzo toksyczne są zabawki na www.bund.net można sprawdzić, co toksycznego jest w zabawkach
- z badań National Academy of Science wynika, że przynajmniej ¼ problemów rozwojowych u dzieci spowodowana jest przez czynniki środowiskowe
- rtęć w morzach znajduje się w ilości od 0.01-10 ug/litr, czyli łącznie jest od 1,38-138 mln ton rtęci w morzach i ta ilość wzrasta co roku nawet o 10%
- dr Esser pokazała co najmniej kilkanaście różnych artykułów, z których wynika to wszystko, spisałam większość autorów, jak będzie coś ciekawego to przetłumaczę
- ogólnie trzeba zadbać o to, aby było mniej chemii wokół dziecka – o tym będzie też mowa później

8. Dr William Shaw, Neurotoksyny środowiskowe: ważny czynnik w etiologii autyzmu i innych chorób przewlekłych

W środowisku aktualnie jest wiele chemikaliów, znajdują się one w: środkach owadobójczych, środkach czyszczących, mydle, plastikach, dywanach, zasłonach, odzieży, roślinach, lekach, pożywieniu, wodzie, powietrzu, przemyśle, środkach grzybobójczych i bakteriobójczych, opakowaniach.
Dr Shaw przypomniał zdarzenie z podawaniem talidomidu kobietom w ciąży – był to środek reklamowany w latach 70. jako bezpieczny środek na mdłości ciążowe (wniosek: nie wierzyć ulotkom produktów). Po jego spożyciu kobiety rodziły dzieci z bardzo zdeformowanymi kończynami. Dr Shaw sądzi, że jest wiele czynników odpowiedzialnych za autyzm u danego dziecka, ale może jeden z tych czynników jest istotniejszy od reszty i można go wyodrębnić.
Dr Shaw postawił hipotezę, że takim czynnikiem może być acetaminofen czyli po naszemu paracetamol. Istnieje wiele prac badawczych, które to potwierdzają. W USA paracetamol podaje się dzieciom często po szczepionkach. Podanie paracetamolu i szczepionki sześciokrotnie zwiększyło ryzyko wystąpienia autyzmu niż podanie samej szczepionki, co wynika z badań. W Kalifornii od lat 50. odnotowano tylko 4 takie lata kiedy ilość diagnoz autyzmu się zmniejszyła – pierwsze takie załamanie było gdy wprowadzono na paracetamolu ostrzeżenia, że nie jest bezpieczny ; drugie – gdy odkryto zespoł Reye’sa czyli przypadki zgonów dzieci po podaniu aspiryny ; trzecie i czwarte – gdy w latach 80. w USA były masowe morderstwa z wykorzystaniem kapsułek aspiryny do których morderca wsypał cyjanek i znacznie spadła sprzedaż aspiryny. Zdaniem badaczy (Homle, Fischer) paracetamol ma też taki efekt, że jakby kontruje działanie szczepionki i sprawia, że wirus zostaje w organizmie.
Naukowa podstawa tej hipotezy jest taka, że acetaminofen może być wydalony z organizmu na parę sposobów: drogą glukuronidacji (niedostępna dla dzieci, nie mają jeszcze takich możliwości), drogą sulfacji (u wielu dzieci z autyzmem są z tym problemy), drogą konwersji w aminofenol i w konsekwencji w substancję kannabinoidalną (dlatego młodzież łyka aspirynę żeby mieć odlot) i ostatecznie – jak droga glukuronidacji i sulfacji jest niedostępna – organizm przekształca acetaminofen w NAPQI – bardzo toksyczną molekułę, która zużywa cały glutation i łączy się z wszystkimi proteinami z grupą sulfhydrylową.
Dr Shaw przytoczył kazus Kuby – jest tam najmniej autystów a najwyższy stopień zaszczepienia dzieci (99% jest zaszczepionych), więc jest to zaprzeczenie tego, że tylko szczepionki odpowiadają za autyzm ALE na Kubie paracetamol jest na receptę i w ogóle trudno dostępny (bo tam generalnie puste półki w sklepach są) i może stąd taki efekt.
Paracetamol to lek, który wg licznych badań zwiększa ryzyko astmy, AZS, raka, a zażywany podczas ciąży uszkadza wątrobę dziecka. Zmniejsza ilość testosteronu u mężczyzn.
W organic acid test bada się parametr 5-Oxoproline czyli inaczej pyroglutamic acid – jak jest podwyższony to oznacza, że cały glutation organizmu został zużyty, jest to wskaźnik stresu metabolicznego. Może to być wskaźnik zatrucia acetaminofenem.

Bardzo toksyczne są pyretryny zawarte w szamponach dla zwierząt – ekspozycja na pyretryny szczególnie w 2 trymestrze ciąży (wystarczy umycie psa w takim szamponie) dwukrotnie zwiększa ryzyko autyzmu u dziecka. BARDZO toksyczne są pestycydy i są badania na temat zatrucia dzieci z CZR i ADHD pestycydami. Ekspozycja na organochloryny podczas ciąży siedmiokrotnie zwiększa ryzyko autyzmu u dziecka!
Co robić? Wyeliminować całkowicie perfumy, wody kolońskie, dezodoranty i wszystkie kosmetyki z metalami ciężkimi, używać szarego mydła (najgorsze są mydła antybakteryjne, najwięcej chemii), używać ekologicznych środków czyszczenia (orzechy do prania itp), zdejmować ubranie z pracy przed wejściem do domu, nie używać pestycydów.

9. Dr Leticia Dominguez-Shaw, Dieta niskoszczawianowa, SCD i inne specyficzne diety stosowane w leczeniu autyzmu

SCD – special carbohydrates diet:
- usuwamy z pożywienia dwucukry i wielocukry\
- pozostają cukry proste, które są na tyle małe że przechodzą przez nieszczelne jelito i nie karmią grzyba ani bakterii
- podajemy mięso (nie w formie wędlin czy parówek), domowej produkcji jogurt (na diecie bezkazeinowej podajemy kefir z wody kokosowej, fermentowane warzywa, do picia kombucha), owoce (ale nie w puszce czy suszone z dodatkiem syropu z kukurydzy), miód, warzywa nie zawierające skrobii, żadnego mleka ani ziaren – ryżu, kukurydzy, ziemniaków też nie podajemy.
Kiedy nie stosować? Jak jest w organic acid test podwyższony orotic acid (jest problem z mocznikiem i nie można dużo protein), oxalic acid (jest problem ze szczawianami i nie wolno owoców), są alergie pokarmowe na ww. produkty.
Dr Dominguez-Shaw zaleciła zacząć od diety bezglutenowej/bezkazeinowej (w USA to jest standardowy pierwszy i niezbędny krok dla autystów) i jeśli jest problem z grzybami powracający przez wiele miesięcy – spróbować SCD.

LOD – dieta niskoszczawianowa
Szczawiany pochodzą z diety, własnego metabolizmu i wytwarzają je też grzyby (głównie aspergillus i candida). Przez nieszczelne jelito szczawiany trafiają do krwi. Warto spożywać cytrynian wapnia przed posiłkiem – rozbija szczawiany. Oznaką problemów ze szczawianami może być popuszczanie moczu, dotykanie genitaliów – powodują one dyskomfort dróg moczowych.
Kiedy zastosować tę dietę? Jak jest w organic acid test wysoki oxalic acid, jak są problemy z drogami moczowymi, też zatwardzenie/biegunki przewlekłe.
Co podawać: VSL3, cytrynian wapnia, witaminę B6, zbadać mocz w kierunku genetycznej hiperoksalurii i wyeliminować jedzenie bogate w szczawiany (listy są na sieci, podawał też te pokarmy dr Shaw w pierwszym wykładzie)

BED – Body Ecology Diet
Jest to dieta przeznaczona do walki z grzybami, spożywa się wiele warzyw, nie łączy mięsa i skrobii w jednym posiłku, podkreśla się rolę jedzenia alkalizującego jelita, trudno ją wprowadzić u niejadków

Dieta Feingolda
- eliminuje się pokarmy z fenolami, sztucznymi barwnikami, salicylatami (jabłka, winogrona, ogórki, pomarańcze, banany), a po 4 tygodniach powoli wprowadza jedno po drugim

Dlaczego dieta może się nie udać?
- jedno z rodziców się nie zgadza
- szkoła/przedszkole nie wspiera rodziny
- lekarze rodzinni nie wspierają wprowadzenia diety
- inni członkowie rodziny nie szanują wskazań dietetycznych
- dieta jest droga
- są ukryte źródła ekspozycji (np. w szamponach jest często pszenica)

10. Lori Knowles – Suplementy w leczeniu autyzmu

1.   Witaminy:
- olej z wątroby dorsza – doskonałe źródło witaminy A, Lori jest fanką tego suplementu
- witamina D – bardzo ważna, najlepiej przyswajalna w formie płynnej, jest neuroochronna, antyzapalna, zapobiega atakom padaczki – dawka 3000-5000 iU dziennie jest niezbędna
- witaminy z grupy B – są w zbożach, których nasze dzieci zwykle nie jedzą, więc trzeba suplementowa tym bardziej  że są zużywane w stresie, oto dawki:
B1, B2 – 10-50 mg
B3 – 20-60 mg
B9 – 400-800 mg
MB12 – 100-300 mcg
Biotyna 15-450 mcg
B5 – 20-80 mg
B6 10-50 mg ALE wysokie dawki B6 dają doskonałe rezultaty, co potwierdza 21 badań w tym 13 z grupą placebo, trzeba zwiększać dawkę B6 o 50 mg (max do 600 mg) dziennie, zwykle dzieciaki doskonale funkcjonują na 150-300 mg, gdy pojawi się hiperaktywność trzeba obniżyć dawkę, do tego koniecznie trzeba dawać magnez 3-4 mg/funt
Co do B12 – w formie MB12 – to doustnie jest bardzo źle przyswajalna i trzeba jej podawać aż 5000 mcg co 1-2 dni, w sprayu do nosa lepiej przyswajalna i wystarczy 1200 mcg co 1-2 dni, najlepiej przyswajalna jest w formie zastrzyków podskórnych.

2.   Minerały
- dzieci z autyzmem mają ekstremalnie niskie poziomy cynku, magnezu i selenu. Oto sugerowane dawki:
Wapń (w formie citrate, chelate, ionic) – 500-1000 mg
Magnez – 150-400 mg
Selen – 50-300 mcg
Cynk (picolinate, chelate, ionic) – 1-2 mg/funt
Chrom – 30-75 mcg
Mangan – 2-5 mg
Jod – 150-150 mcg
Lit – 250-1000 mcg
Objawy niedoborów:
-   cynku: trądzik, apatia, słabe paznokcie, depresja, biegunka, egzema, zmęczenie, opóźniony wzrost, wypadanie włosów, słaba odporność, drażliwość, utrata apetytu, problemy z pamięcią, słabe leczenie ran
-   magnezu: niepokój, zdezorientowanie, hiperaktywność, bezsenność, słabe mięśnie, zła praca serca
-   litu: agresja, huśtawki nastrojów, mózg podatny na neurotoksyny
-   wapń: ból oka, skurcze, halucynacje, depresja, bezsenność drażliwość, zły stan zębów

Formy podawania minerałów: do ssania, proszek, kapsułki, w płynie – 5x lepiej przyswajalny niż inne sposoby i dobry dla osób z problemami jelitowymi, bo jest to forma od razu przyswajalna przez komórki.
Ekstra dawki minerałów są niezbędne przy: chelatacji, stwierdzonych niedoborach, eliminacji nabiału (wapń), suplementacji wysokimi dawkami B6 (dodatkowy magnez), złym apetycie (dodatkowy cynk)
Wapń konkuruje ze wszystkim i zawsze trzeba podawać osobno (i to razem z witaminą D dla optymalnego wchłaniania) – oprócz magnezu (magnez i wapń można a nawet powinno się podawać razem). Również cynk jest taki konkurujący, choć nie w takim stopniu co wapń i też powinno się go podawać oddzielnie.

3.   Antyoksydanty
- stres oksydacyjny spowodowany jest przez zanieczyszczenia środowiskowe, toksyny bakterii i grzybów, stres. U autystów ten stres jest na dużym poziomie, co potwierdzono w licznych badaniach.
- trzeba podawać antyoksydanty kilka razy dziennie, bo szybko się zużywają. Oto dawki:
Witamina C – minimum 1000 mg i dodajemy po 500 mg aż do wystąpienia biegunki (wtedy obniżamy). W 1991 roku przeprowadzono badania i stwierdzono, że u dorosłych i nastolatków podawanie 8000 mg witaminy C dziennie znacznie zmniejszyło objawy autystyczne.
Witamina E (mieszane tokoferole) – 100-400 iU
Witamina A – 1000-3000 iU (dobre źródło to olej z wątroby dorsza)
Pycnogenol – 25-100 mg (badania potwierdziły jego skuteczność w leczeniu ADHD)
Beta Karoten – 5000-50.000 iU
Koenzym Q10 – 50-200 mg
Ekstrakt z pestek winogron, cynk, selen, kurkuma to też antyoksydanty

4.   Niezbędne kwasy tłuszczowe
- z tych kwasów utworzone są membrany komórkowe, ich właściwy poziom umożliwia przepuszczanie sygnałów przez membrany
- omega-3 – niedobór powoduje astmę, egzemę, hiperaktywność, brak koncentracji, depresję, ataki złości. Dobrym źródłem tych kwasów jest olej z wątroby dorsza podawany z jedzeniem (i trzeba się upewnić, żeby był wolny od zanieczyszczeń). Lori odradza olej lniany, bo nie wszystkie dzieci dobrze rozkładają nasiona lnu. Dawka omega-3 to 1-3 g dziennie. Nie podawać z wapniem
- omega-6 zawarta jest w ziarnach, jajkach, drobiu, margarynie, ciastkach. W diecie przeciętnego człowieka jest tego mniej więcej 20-40 razy za dużo, ale nasze dzieci mogą mieć niedobór, Trzeba zatem podawać olej z wiesiołka tak, aby dziecko dostawało 200-800 mg GLA dziennie

5.   Probiotyki
Ważne, żeby dawać je przez długi okres czasu (bo nie ma widocznych efektów od razu), zawsze w odstępie 2-godzinnym od leków przeciwbakteryjnych i przeciwgrzybicznych, niektóre zawierają śladowe ilości kazeiny, co 3-4 miesiące trzeba rotować. Polecała VSL3 i preparaty z bifidobacterium infantis.

6.   Enzymy trawienne
Według Lori (i np. Karen DeFelice, która jest autorką dwóch książek o stosowaniu enzymów) powinno się je podawać z większością posiłków, mają działanie przeciwzapalne, zawsze w diecie są jakieś peptydy, które enzymy pomagają rozłożyć. Szczególnie niezbędne są przy złym przybieraniu na wadze, niestrawionych resztkach w kale, złej konsystencji kału, nietolerancjach pokarmowych

7.   Leki antygrzybowe – ten temat nie był rozwijany

8.   Aminokwasy – ten temat nie był rozwijany

11. Brigitte Esser – Chelatacja

- osoby z autyzmem gorzej usuwają metale ciężkie z powodu mutacji genetycznych (głównie MTHFR), problemów z glutationem. Symptomy zatrucia metalami nie są specyficzne i nie ma też testu na 100% potwierdzającego zatrucie. Dobry jest test z włosów ale też możliwe jest zanieczyszczenie próbki. Zdaniem dr Esser wskazówki interpretacyjne Andy Cutlera są bardzo dokładne.
- test z krwi – metale utrzymują się w krwi bardzo krótko, ciało stara się ich pozbyć (a jak nie może to trafiają do tkanek)
- test z kału – bardzo słaba wartość diagnostyczna
- test z moczu – testy prowokacyjne też nie pokażą obciążenia metalami, pokażą ewentualnie czy organizm może je mobilizować

Przed chelatacją powinno się wykonać morfologię z rozmazem, badanie wątroby, nerek i poziomu elektrolitów.
Zdaniem dr Esser przed chelatacją powinno się latami przygotowywać organizm, zmniejszyć stres oksydacyjny, wyleczyć jelito, wyleczyć wątrobę i nerki. Na pewno istotna była rada aby zrobić wszystko, aby nie było dalszej ekspozycji na metale – założyć filtry na kran, wymienić rury i farby na ścianie na bezołowiowe i bezmiedziowe. Uważać na owoce i warzywa, które są bardzo naładowane metalami. Nie szczepić albo szczepić szczepionkami bez tiomersalu (dostępne coraz bardziej w Niemczech, które swoje zapasy szczepionek zatrutych tiomersalem sprzedają tanio do krajów Europy Wschodniej), sprawdzić czy w kosmetykach nie ma metali ciężkich.

Co do samej chelatacji to dr Esser mówiła o DMSA, które jest lekiem zaaprobowanym przez FDA do użytku pediatrycznego, najlepiej podawać doustnie, chelatuje głównie ołów.
Możliwe efekty uboczne to zaburzenia układu pokarmowego, rozrost candidy (karmionej przez siarkę), obniżona odporność, wysypki.
Dr Esser wspominała też o DMPS, który ma szerszy zakres działania i chelatuje więcej metali, lepiej się wchłania i podaje się go co 8 godzin przez 2-3 dni, a potem jest 11 dni przerwy. Efekty uboczne – podobnie jak DMPS.
Dr Esser wspomniała o alternatywnych sposobach chelatacji: chlorella, NDF, zeolit, biorezonans, czosnek, kolendra – wg mnie polecane dla tych, którzy lubią eksperymentować na swoich dzieciach.

Pyroluria

Pyroluria jest to zaburzenie genetyczne, którego podłożem jest nabyta nierównowaga biochemiczna przejawiająca się w nadmiernej produkcji pyroli przez organizm ludzki. Są one produktem ubocznym syntezy hemoglobiny i nie spełniają w organizmie przydatnych funkcji, zostają po prostu wydalane z moczem. U większości osób ich poziom jest niski, u osób z pyrolurią – nadmiernie wysoki. Co istotne, pyrole wiążą się w ciele z cynkiem i witaminą B6, powodując że te składniki odżywcze są w znacznej mierze wydalane z organizmu. Powoduje to poważne problemy głównie w sferze psychicznej. Zajmujący się tym problemem dr Dietrich Klinghardt stwierdził, iż pyroluria współistnieje aż u 80% osób z chorobą Lyme, 75% osób zatrutych metalami ciężkimi i aż u 80% dzieci z autyzmem. To bardzo znaczący odsetek. Wysoki poziom pyroli w moczu jest również wiązany ze schizofrenią; pyroluria została odkryta w latach 50. właśnie w trakcie badań przyczyn schizofrenii. Ogólnie wiąże się to zaburzenie jako czynnik współistniejący z takimi chorobami jak ADHD, alkoholizm, autyzm, choroba dwubiegunowa, depresje, zespół Downa, epilepsja, zatrucie metalami ciężkimi, stwardnienie rozsiane, choroba Parkinsona, schizofrenia.

Charakterystyczne objawy to:

Nieumiejętność zapamiętywania snów

Niska tolerancja stresu

Zachowania antyspołeczne

Zaburzenia behawioralne

Niestabilność emocjonalna

Częste bóle stawów

Częste infekcje

Słaby apetyt, w szczególności rano

Słaba tolerancja protein, preferowanie diet wegetariańskiej

Blada karnacja, trudność w nabraniu opalenizny

Białe plamki na paznokciach

Mdłości, choroba lokomocyjna

Hipoglikemia

Alergie

Częste poczucie zmęczenia

Słabe szkliwo nazębne

Problemy z dziąsłami

Słodkawy zapach potu i oddechu

Nietoleancje na światło, zapach, dźwięk

Drgawki, spazmy

Halucynacje

Nieproporcjonalne nabieranie masy tłuszczowej

Chłodne dłonie i stopy

Sucha i szorstka skóra

Słaba pamięć krótkoterminowa

Mechanizm zaburzenia wygląda w sposób następujący. Pyrole wiążą się z cynkiem, biotyną, manganem, witaminą B6, kwasem arachidonowym i innymi ważnymi składnikami odżywczymi prowadząc do ich niedoborów.

Niedobór cynku może powodować zaburzenia emocjonalne, szorstką skórę, gorsze leczenie się ran, opóźniony wzrost, białe plamki na paznokciach, problemy skórne, utratę apetytu, demineralizację kości wiele innych. Cynk jest dodatkowo silnym przeciwutleniaczem i niższe poziomy cynku prowadzą do stresu oksydacyjnego. Konsekwencją niedoboru cynku jest obniżony poziom glutationu, a zatem zmniejszone funkcje detoksykacyjne organizmu. Cynk jest niezbędny do prawidłowego działania układu odpornościowego.

Niedobór biotyny z kolei prowadzi do wysypek, suchej skóry, słabych paznokci i włosów, jak również depresji, otępienia, utraty słuchu, zakażeń grzybiczych, bóli mięśniowych. Biotyna bierze udział w produkcji energii w mitochondriach, jest niezbędna dla prawidłowego funkcjonowania układu nerwowego. Bierze udział w procesach starzenia.

Niedobór manganu może skutkować bólem stawów, stanem zapalnym, artretyzmem. Może powodować zmiany w pigmencie włosów albo w spowolnieniu ich wzrostu. Jest niezbędny dla normalnego wzrostu, gospodarki glukozowej, metabolizmu tłuszczów i produkcji hormonów tarczycowych. Może prowadzić do cukrzycy, choroby Parkinsona, osteoporozy i epilepsji.

Niedobór witaminy B6 może prowadzić do nadmiernej nerwowości, bezsenności, osłabienia mięśni, słabego wchłaniania składników odżywczych, zaburzenia syntezy neuroprzekaźników i hemoglobiny. B6 ma również wpływ na poziom glutationu.

Kwas arachidonowy –jego niedobór może prowadzić do zaburzenia funkcji białych krwinek i większej podatności na infekcje. Powoduje zmiany w zachowaniu, suchość w oczach, opóźnienie wzrostu, suchą skórę i włosy, utratę włosów, problemy z nerkami, problemy z tętnem.

Pyroluria jest silnie związana z zatruciem metalami ciężkimi. Po pierwsze zarówno cynk, jak i B6 biorą udział w produkcji glutationu, który odpowiada za usuwanie metali ciężkich z organizmu. Niedobór tych składników powoduje niedobór glutationu. Poza tym z uwagi na fakt, iż w organizmach pacjentów z pyrolurią jest za mało cynku – rtęć, ołów i metale o podobnej do cynku budowie cząsteczkowej wiążą się w organizmie w miejsce cynku.

Pyrolurię można potwierdzić poprzez test na poziom pyroli w moczu. W Europie można go przeprowadzić w tym laboratorium: http://d117039.pem.kpn.net/de/hpu/hputest.html – koszt wynosi ok. 53 EUR. W USA testy przeprowadzają liczne laboratoria, jednak wymagane jest zlecenie lekarza amerykańskiego.

Po potwierdzeniu pyrolurii pacjent jest leczony dużymi dawkami cynku, biotyny, manganu, witaminy B6 i kwasu arachidonowego. Dr Klinghardt opracował szczegółowy protokół leczenia z podaniem dokładnych dawek. Istnieją również preparaty zbiorcze, zawierające wszystkie ww. składniki, np. Depyrrol (http://www.aloeride.com/products/Depyrrol-Kind%3A-children%27s-HPU-formula.html) . Poprawa następuje po około 4-6 miesiącach.

Podczas leczenia pyrolurii podawane są wysokie dawki cynku – wskazane jest częste kontrolowanie poziomu miedzi we krwi, gdyż cynk i miedź działają wobec siebie antagonistycznie.

Więcej o pyrolurii w internecie na stronach polskojęzycznych tu: http://www.hashimoto.pl/index.php/choroba-hpu

Powyższe podsumowanie opracowano na podstawie:

http://www.primalbody-primalmind.com/?p=398

http://www.neuro24.de/show_glossar.php?id=1973

http://www.betterhealthguy.com/joomla/images/stories/PDF/kpu_klinghardt_explore_18-6.pdf

UWAGA TŁUMACZA: Wg dr Andy Cutlera, pyroluria może być jednym z objawow zatrucia rtęcią, czyli w mniejszym stopniu zaburzeń genetycznych.

Stres oksydacyjny w autyzmie

Stres oksydacyjny w autyzmie

Woody R. McGinnis, MD

Alternative Therapies, Nov/Dec 2004, vol. 10, no 6

 

Kiedy poziom oksydantów przekracza poziom obrony antyoksydacyjnej organizmu, różne układy dotyka stres oksydacyjny, powodujący zniszczenia cząsteczek i zaburzenia ich funkcjonowania. Autyzm to zaburzenie behawioralne, z deficytami w zakresie komunikacji i rozwoju społecznego. Istnieją teorie, iż stres oksydacyjny może odgrywać rolę w patofizjologii zachowań autystycznych (1). Inne poważne zaburzenie behawioralne, schizofrenia, charakteryzuje się wysokim poziomem markerów świadczących o stresie oksydacyjnym (2) i udokumentowana jest poprawa po użyciu antyoksydantów (3). Wiele leków neuroleptycznych stosowanych wobec schizofreników to tak naprawdę silne antyoksydanty (4).

Bezpośrednie dowody stresu oksydacyjnego w autyzmie


Znajdujące się w organizmie lipidy, proteiny, glikoproteiny i kwasy nukleinowe mogą być uszkodzone w procesie oksydacji i istnieje wiele metod wykorzystywanych w celu zmierzenia poziomu stresu oksydacyjnego w moczu, krwi, wydychanym powietrzu i próbkach tkanek. Lipidy, które są składnikami membran komórkowych, podlegają łatwej peroksydacji, w szczególności jeśli są wysoko nienasycone.

Bezpośrednie wskaźniki peroksydacji lipidów są wysokie przy autyzmie. W opublikowanych badaniach kwas tiobarbiturowy w czerwonych krwinkach (wskaźnik peroksydacji lipidów) był dwukrotnie podwyższony u dzieci z autyzmem w porównaniu do grupy kontrolnej (5). Inne badania wykazały, że poziom peroksydów lipidowych w osoczu (6) i izoprostanów w moczu (7) był znacznie wyższy u dzieci z autyzmem.

Niebezpośrednie wskaźniki również wskazują na wyższą peroksydację lipidów u dzieci z autyzmem. Niskie stężenia wysoko nienasyconych lipidów w membranach komórkowych czerwonych krwinek (8) sugerują zniszczenia oksydacyjne. Wyższy poziom fosfolipazy A2 (8) i utrata asymetrii membran (9) u dzieci z autyzmem odpowiadają efektom oksydacji.

Lipofuscyna to nie podlegająca degradacji matryca oksydowanych lipidów i połączonych z nimi protein, która formuje się w tkance jako efekt stresu oksydacyjnego. Powiązanie umiejscowienia lipofuscyn z obciążeniami organizmu może dać pewne wskazówki co do neuropatogenezy. W chorobie Alzheimera lipofuscyny są powiązane z oksydacją mitochondrialnego DNA (10). W udokumentowanym przypadku zatrucia rtęcią osoba, wykazująca symptomy psycho-organiczne, aż 17 lat po ekspozycji w mózgu ujawniono podwyższony poziom rtęci zlokalizowanej w lipofuscynie (11).

Lipofuscyny były eksperymentalnie indukowane poprzez podawanie silnych substancji oksydujących jak żelazo (12) czy kwas kainowy (13). U zwierząt lipofuscyny kształtowały się najpierw w hipokampie, a potem w korze mózgowej (14). W trakcie tych eksperymentów wykazano, że ilość lipofuscyn zmniejsza się poprzez suplementację witaminami C i E (15) oraz karnityną (16) a aktywność mózgu była odwrotnie proporcjonalna do zawartości lipofuscyn (17).

Edith Lopez-Hurtado i Jorge Prieto ujawnili znaczne Lipofuscyny w częściach kory mózgowej autystów odpowiedzialnej za język i komunikację, deficyty integralne z diagnozą autyzmu. Po osiągnięciu wieku 7 lat, w porównaniu do grupy kontrolnej, większe lipofuscyny zaobserwowano u autystów w obszarze Brodmanna – rozpoznawanie mowy (22), obszarze odpowiedzialnym za czytanie (39) i za wykorzystywanie języka (44). Zarówno u autystów, jak i u grupy kontrolnej, lipofuscyny były znaczniejsze w obszarze Brodmanna (44). Analiza warstw kory mózgowej wykazała, że ilość komórek zawierających lipofuscyny była większa w warstwach II i IV. Znaczny spadek ilości neuronów zaobserwowano w warstwach II i IV w korze mózgowej autystów (18). Większe lipofuscyny ujawniono również u osób z zespołem Retta (19).

Siatkówka, wirtualne przedłużenie mózgu, jest bardzo wrażliwa na stres oksydacyjny. Im większy jest ten stres, tym większą peroksydację lipidów w siatkówce zaobserwowano u modeli zwierzęcych (20). W autyzmie, odbiegające od normy retinogramy ze spłaszczonymi falami B (21-22) sugerują zniszczenie siatkówki wywołane przez oksydację. Reakcja siatkówki na antyoksydanty u autystów nie została przebadana.

Dane implikujące większą oksydację cząsteczek w autyzmie podsumowane są w tabeli 1.

Tabela 1. Cząsteczki podlegające oksydacji u dzieci z autyzmem w porównaniu do grup kontrolnych.

Wynik odbiegający od normy                                  Pozycja w bibliografii

kwas tiobarbiturowy w czerwonej krwince                          (5)

peroksydy lipidowe w osoczu                                                    (6)

izoprostany w moczu                                                                    (7)

lipofuscyny w korze mózgowej                                                (18)

retinogramy poza normą                                                           (21-22)

Niebezpośrednie dowody stresu oksydacyjnego w autyzmie

Niebezpośrednie dowody większego stresu oksydacyjnego w autyzmie to: 1) niski poziom enzymów przeciwutleniających i glutationu, 2) niższy poziom przeciwutleniających składników odżywczych, 3) wyższy poziom metali ciężkich i toksyn, 4) wyższa oksydaza ksantynowa  i poziom cytokin oraz 5) większa produkcja tlenku azotu, toksycznego wolnego rodnika.

Niższe poziomy enzymów przeciwutleniających i glutationu w autyzmie (tabela 2) mogą brać się ze zmniejszonej produkcji albo z nadmiernego wykorzystywania i powodują większą wrażliwość na oksydanty. Niższy poziom przeciwutleniających składników odżywczych (tabela 3) może brać się ze zmniejszonej podaży lub absorpcji i/lub większego zużycia w wyniku oksydacji. W literaturze naukowej udokumentowano zwiększoną oksydację cząsteczek w różnych stanach niedoboru składników odżywczych organizmu (29).

 

Tabela 2. Niższe poziomy enzymów przeciwutleniających i glutationu u dzieci z autyzmem w porównaniu do grup kontrolnych.

Wynik niższy u autystów                                         Pozycja w bibliografii

GSHPx w czerwonej krwince                                               (23-24)

GSHPx w osoczu                                                                       (24)

SOD w czerwonej krwince                                                    (24)

SOD w płytkach krwi                                                              (23)

Katalaza w czerwonej krwince                                             (5)

Całkowity glutation w osoczu                                             (25)

GSH/GSSG w osoczu                                                               (25)

Tabela 3. Niższy poziom przeciwutleniających składników odżywczych u dzieci z autyzmem w porównaniu do grup kontrolnych.

Składnik odżywczy                                                  Pozycja w bibliografii

Witaminy C, E i A w osoczu                                                      (26)

Poziom B6 (P5P) w czerwonej krwince                                (27)

Aktywność B6 (EGOT) w czerwonej krwince                     (26)

Poziom magnezu w czerwonej krwince                                (26)

Poziom selenu w czerwonej krwince                                    (26)

Poziom cynku w osoczu                                                            (28)

Poziom cynku w czerwonej krwince                                     (26)

Poziomy składników odżywczych odzwierciedlają status glutationu i enzymów przeciwutleniających. Dobrze znany jest efekt podawania witamin C i E na wzrost produkcji glutationu. Niedobór witaminy B6 jest powiązany z niższą peroksydazą glutationową (GSHPx) i reduktazą glutationową (30). Wszystkie formy GSHPx zawierają selen i istnieje silny związek między niskim poziomem selenu we krwi a aktywnością GSHPx (31).

Toksyny organiczne (33-40) i metale ciężkie (35) to silne utleniacze. Mogą kumulować się (tabela 4) z uwagi na upośledzoną detoksyfikację, z czym mamy do czynienia w autyzmie (41). Toksyny na różny sposób powodują utlenianie komórek. Toksyny organiczne i insektycydy stymulują syntazę tlenku azotu (NOS) (42). Miedź katalizuje produkcję wolnych rodników, szczególnie gdy nie wystarczający jest poziom katalazy (32). Rtęć zwiększa stres oksydacyjny blokując produkcję energii w mitochondriach i zmniejszając poziom glutationu.

Krążące cytokiny (40) i oksydaza ksantynowa (XO) (5) są podwyższone w autyzmie i obie powodują produkcję wolnych rodników. XO pochodzi z oksydacji dehydrogenazy ksantynowej. Cytokiny i XO to powód i skutek stresu oksydacyjnego.

Tabela 4. Wyższy poziom utleniaczy u dzieci z autyzmem w porównaniu do grup kontrolnych.

Parametr                                                       Pozycja w bibliografii

Perchloretylen w osoczu                                                        (26)

Rtęć, ołów i arszenik w czerwonej krwince                     (26)

Rtęć w moczu                                                                              (35)

Miedź w osoczu                                                                          (36)

Azotyny i azotany w osoczu                                                 (37-38)

Azotyny i azotany w czerwonej krwince                         (39)

Krążące cytokiny                                                                      (40)

Oksydaza ksantynowa w czerwonej krwince                (5)

Wyższa produkcja wolnych rodników w autyzmie


Tlenek azotu (NO), który jest krótkotrwałą substancją, jest mierzony jako całkowita ilość azotynów i azotanów, które są stabilnymi pochodnymi tlenku azotu. W autyzmie poziom azotynów i azotanów w czerwonej krwince (39) i osoczu (37, 38) jest podwyższony, a poziom ich w osoczu koreluje z kwasem tiobarbiturowym (30). Nadmierna produkcja NO odgrywa rolę w innych zaburzeniach neurobehawioralnych, np. schizofrenii (43), chorobie Alzheimera, zespole Downa (44) i stwardnieniu rozsianym (45).

Nie wiadomo, czy nadmierna produkcja NO w autyzmie jest umiejscowiona w konkretnych organach czy tkankach. Jakiekolwiek komórki produkujące cytokiny mogą stymulować NO. W autyzmie najbardziej prawdopodobnym jest, że ma to miejsce w mózgu i przewodzie pokarmowym, oba te układy w autyzmie zwykle nie są w normie, a dominują objawy behawioralne i gastrologiczne.

Nadmierne NO w mózgu to poważna sprawa, gdyż zwiększa apoptozę (46), uszkadza barierę krew-mózg (47), zwiększa neurodegenerację (48) i demielinację (49). Takie mechanizmy mogą mieć wpływ na rozwój w autyzmie.

Zmniejszona aktywność receptorów wrażliwych na oksydację ma miejsce w mózgach autystów i może mieć związek z poziomem NO albo ogólnie z większym stresem oksydacyjnym. Zmniejszona jest aktywność receptorów cholinergicznych (50), a są one podatne na działanie NO (51). Receptory kwasu gamma-aminobutyrowego (GABA), generalnie podatne na stres oksydacyjny (52) są zmniejszone w hipokampach autystów (53). Jest prawdopodobnym, że polimorfizm GABA, powiązany z autyzmem, może doprowadzić do zwiększenia podatności tych receptorów na stres oksydacyjny (54).

W aktualnej literaturze wskazano, że u autystów występuje mniej komórek Purkinjego w móżdżku, mniejsze neurony w korze mózgowej i ciele migdałowatym (55). We wszystkich badaniach podkreślano utratę komórek Purkinjego (56). W hipokampie stwierdza się większe zagęszczenie i splątanie dendrytów (57). Nie wyjaśniono tych wyników badań. Nowoczesna technologia pozwoli zbadać i zlokalizować konkretne oksydacyjne biomarkery w mózgach autystów, co doprowadzi do możliwych wyjaśnień tych patologii.

Tabela 5. Problemy przewodu pokarmowego w podgrupach dzieci z autyzmem

Pararmetr                                                                 Podgrupa        Pozycja w bibliografii

Wysoka przepuszczalność jelita                     42%    asymptomatyczna                    (58)

Refluks                                                                      69%    objawy brzuszne                       (59)

Przewlekłe zapalenie śluzówki żołądka         42%    objawy brzuszne                     (59)

Przewlekłe zapalenie dwunastnicy                67%    objawy brzuszne                     (59)

Guzkowate rozrosty tkanki                             89%    regres, objawy pokarmowe    (60)

Kolka                                                                        88%    regres, objawy pokarmowe    (60)

Układ pokarmowy autystów jest w stanie zapalnym (tabela 5) i wydaje się, że jest powiązanie pomiędzy układem pokarmowym a NO, które intensyfikuje objawy. Ból, zatwardzenie lub biegunka, refluks (61) i zwiększona przepuszczalność jelit (58) są powszechne. Przewlekły stan zapalny może zaistnieć w różnych miejscach przewodu pokarmowego, przy czym przeważa stan zapalny krętnicy z adenopatią (60-62). . W innych stanach chorobowych, stan zapalny przewodu pokarmowego związany jest z produkcją NO. Azotyny i azotany w osoczu są podwyższone przy kolce dziecięcej (63). W przewlekłej biegunce, poziom azotynów i azotanów w moczu skorelowany jest z cieknącym jelitem (64). Prawdopodobnie jelita dzieci z autyzmem produkują więcej NO. Azotyny wiążą glutation (75).

NO jest potencjalnie antybakteryjne (65). Niektóre wirusy i bakterie prowokują zatem wzmożoną produkcję NO w jelitach (66) i mózgu (67). Niestety, duża ilość NO oksyduje też tkankę organizmu gospodarza (66, 68). Dlatego w jelitach nadmiar NO zwiększa stan zapalny i przepuszczalność(69). Młode jelito jest wyjątkowo podatne na szkody wyrządzone przez NO, w szczególności krętnica (70-71). Zbyt wiele NO może zniszczyć ochronę przeciwoksydacyjną, obniżając poziomy glutationu (72,73). Niski glutation zwiększa poziom NO (74).

Nadmiar NO prowadzi do zwiększonej produkcji peroksyazotynów (ONOO), który atakuje cząsteczki. ONOO tworzy się przez reakcję NO z nadtlenkiem i jest bardziej reaktywne niż tworzące go substancje. Atakuje głównie, co ma związek z patofizjologią autyzmu: grupy tyrozynowe (np. syntazę glutaminową i reduktazę glutationową), grupy sulfhydrylowe, dysmutazę nadtlenkową (SOD), neurofilamenty, ceruloplazminę, receptory membran, kanały jonowe, G-proteiny i metioninę. ONOO powoduje niedobór antyoksydantów, oksyduje lipidy i niszczy DNA (31, 76).

NO jest zbyt słabe i nie nadaje się do dłuższego transportu. Ale hipotetycznie nadmiar NO w tkankach może powodować szkodę w innych miejscach organizmu poprzez krążące azotyny i azotany. Na przykład eksperymentalne wstrzyknięcie azotynów uszkadza barierę krew-mózg (77). Wyższe poziomy azotynów w autyzmie mogą wiązać ze sobą przewlekły stan zapalny jelit i uszkodzenie mózgu. W ten sposób uszkodzone jelito może negatywnie wpływać na mózg.

Albo odwrotnie, odległa produkcja NO może zwiększać poziomy produktów NO, a w konsekwencji prowadzić do wyższego poziomu NO w jelitach i stanu zapalnego jelit (78-79). Azotyny i azotany są selektywnie usuwane z obiegu przez jelita (80, 81). Flora jelit przekształca azotyny i azotany w NO przez redukcję enzymatyczną (82, 83), która przebiega w środowiskach o niskim stężeniu tlenu (84), jak w jelicie. NO wyprodukowane w odległym miejscu krąży jako S-nitrosohemoglobina a wytwarzanie z tej proteiny NO w jelitach jest możliwe dzięki niskiemu stężeniu tlenu i obecności sulfidów produkowanych przez niektóre bakterie (78). Nadmierna produkcja NO mająca miejsce gdziekolwiek w organizmie może również przyczyniać się do stanu zapalnego jelit.

Podatność mózgu i bariery krew-mózg na stres oksydacyjny

Mózg jest podatny na stres oksydacyjny z powodu wysokiego zapotrzebowania na energię, dużą ilość lipidów, żelaza i podatnych na oksydację katecholamin i niższe poziomy endogenicznych przeciwutleniaczy (85, 86). Bariera krew-mózg jest również podatna na uszkodzenia oksydacyjne (87). Kliniczne i laboratoryjne odkrycia sugerują istnienie przepuszczalnej bariery krew-mózg w autyzmie (tabela 6).

Tabela 6. Przepuszczalna bariera krew-mózg w autyzmie?

Wskazówki i predyspozycje                                               Pozycja w bibliografii

Wysoki poziom przeciwciał wobec protein mózgu                           (88-91)

Zaburzenia snu                                                                                                 (59, 92)

Kumulacja limfocytów przy naczyniach krwionośnych                 (38)

Wysoki poziom NO/siarczynów                                                              (37-39)

Niski cynk                                                                                                        (26, 28)

Wysoki poziom krążących cytokin                                                     (40)

Wysokie obciążenie metalami ciężkimi                                             (26, 35)

Zmiany behawioralne przy leczeniu glutationem to również wskazówka przepuszczalnej bariery krew-mózg przy autyzmie. U zdrowych zwierząt z nieprzepuszczalną barierą, nie jest możliwa penetracja jej przez glutation. Lekarze donoszą jednak o poprawie zachowania u niektórych dzieci leczonych glutationem (93), sugerując bezpośredni efekt na układ nerwowy.

U zwierząt eksperymentalne uszkodzenie oksydacyjne bariery krew-mózg powodowało uszkodzenie siatkówki (94, 95). W autyzmie często mają miejsce problemy z zasypianiem albo z wybudzaniem się w nocy (92), co sugeruje możliwość dysfunkcji siatkówki. Specyficzna natura zaburzeń nagłych ruchów gałek ocznych (REM) u autystów jest podobna do takich, które dotyczą innych chorób neurodegeneracyjnych (96). Oprócz faktu, iż melatonina jest skuteczna w leczeniu zaburzeń snu u autystów (97), skutki innych antyoksydantów na zaburzenia snu u autystów nie  były przedmiotem badań.

Obserwacje laboratoryjne sugerują przepuszczalną barierę krew-mózg w autyzmie. Kumulacja limfocytów przy naczyniach krwionośnych została ujawniona u trzech z siedmiu autystów (38), choć nie jest to objaw specyficzny. Wysokie markery autoimmunologiczne przeciwko proteinom układu nerwowego w autyzmie (88-91) sugerują nienormalną reakcję układu odpornościowego na mózg przez przeciekającą barierę krew-mózg.

Autoimmunologiczna reakcja na antygeny mózgu może być wzmożona przez tworzenie się neoepitopów, co ma miejsce przez oksydacyjne zmiany w proteinach (98). Gdy dojdzie do ich wytworzenia, mechanizmy autoimmunologiczne i oksydacyjne w mózgu autystów mogą nawzajem się wzmacniać, gdyż produkcja NO jest znacznie zwiększona przy chorobach autoimmunologicznych centralnego układu nerwowego (67).

Objawy autystyczne są związane u zwierząt z przepuszczalną barierą krew-mózg. Wyższe poziomy krążących cytokin (99), metali ciężkich (100), NO (101) i siarczynów (102) u zwierząt prowadzą do przepuszczalności bariery krew-mózg. Niski poziom cynku u autystów (27, 29) może również mieć znaczenie. Cynk w dostatecznych stężeniach chroni barierę krew-mózg przed uszkodzeniem (101) a niedobór cynku zwiększa jej przepuszczalność, w szczególności w połączeniu ze stresem oksydacyjnym (103).

Co ciekawe, wstępne dane dowodzą, iż istnieje przerost Gram-ujemnych bakterii tlenowych w okolicach gardła i odbytu (104). Te organizmy produkują endotoksyny odpowiedzialne za uszkodzenia bariery krew-mózg.

Niezbędne są dalsze badania bariery krew-mózg u autystów. Bardzo czuły rezonans magnetyczny wykazuje miejsca, w których bariera krew-mózg przecieka (105-106) a skanowanie mikroskopem elektronowym jasno pokazuje uszkodzenia tej bariery, włącznie z  zgrubieniami światła jelita, wakuolizacją komórek śródbłonka, ciałami inkluzyjnymi i nekrozą, choć takie zmiany mogą być rzadkie (100).

Większy stres oksydacyjny i układ pokarmowy


Badania nad niedokrwieniem i reperfuzją wykazują, że układ pokarmowy jest bardzo wrażliwy na uszkodzenia oksydacyjne (31,107). Trawione toksyny (peroksydowane tłuszcze, elektrofiliczne zanieczyszczenia w żywności) i metabolity bakterii i grzybów przewodu pokarmowego to duże obciążenie oksydacyjne dla układu pokarmowego (108). Wystarczające ilości GSHPx (aby zredukować peroksydację), GST (aby zredukować elektrofile) i GSH (aby wspomóc działanie GSHPx i GST) chronią układ pokarmowy przed oksydacją.

Jak wcześniej wskazano zapalenie krętnicy i adenopatia są bardzo częste u dzieci autystycznych, u których występują objawy gastroenterologiczne. Krętnica jest wyjątkowo podatna na uszkodzenia oksydacyjne. U zwierząt GST jest 36 razy niższe w krętnicy niż w jelitach (109). Podwójne uszkodzenie genów odpowiedzialnych za gastroenterologiczne GSHPx skutkuje zapaleniem śluzówki krętnicy, a nie innych części przewodu pokarmowego (110). W zapaleniu jelit, ekspresja NOS jest najbardziej intensywna w krętnicy i jest ona też najbardziej podatna na stres oksydacyjny spowodowany przez NO (111).

Nadmiar NO z dużym prawdopodobieństwem odpowiada za symptomy gastroenterologiczne u autystów (zobacz tabelę 7). NO rozkłada mucynę, która chroni jelito przed podrażnieniami (108). Nadmiar NO zwiększa przepuszczalność jelit (112), która przeważa u autystów (58).

 

Tabela 7. Odmienności układu pokarmowego u autystów prawdopodobnie spowodowane częściowo przez nadmiar NO

Odmienności w autyzmie                               Pozycja w bibliografii

Stan zapalny                                                                        (66)(68)(70)(71)

Zwiększona przepuszczalność jelit                            (69)

Słabe napięcie zwieraczy                                              (113)

Słabe skurcze woreczka żółciowego                         (105)

Powolne trawienie                                                           (70)

W nadmiarze NO powoduje rozluźnienie zwieraczy (113) a dwie trzecie dzieci z autyzmem, u których występują objawy gastroenterologiczne dotyka refluks (59). Nadmiar NO ogranicza skurcze woreczka żółciowego (114), co może odpowiadać za jaśniejszy kolor stolców zaobserwowany przez lekarzy i rodziców wielu dzieci z autyzmem. Słaby przepływ żółci ma wpływ na gorsze odżywienie i ogranicza dostarczanie ochronnego GSH do śluzówki jelit.

Nadmiar NO powoduje także powolne trawienie (70). Wiele dzieci z autyzmem cierpi na zatwardzenia. Możliwe, że złe wchłanianie i przerosty flory bakteryjnej powodują tendencję do zatwardzeń u jeszcze większej ilości dzieci z autyzmem.

Stres oksydacyjny, niska produkcja energii i ekscytotoksyczność

Stres oksydacyjny, niska produkcja energii i ekscytotoksyczność są powiązane ze sobą. Na przykład produkujące energię mitochondria są podatne na uszkodzenia oksydacyjne (86, 115-120) a uszkodzone mitochondria wpuszczają więcej oksydantów (121-123). Poza tym niewystarczająca produkcja energii uzasadnia predyspozycje do aktywacji receptorów pobudzających, zmniejszoną obronę przed wewnątrzkomórkowym wapniem, zwiększoną oksydację i apoptozę (86, 124).

Nadmierna stymulacja receptorów pobudzających skutkuje uszkodzeniem oksydacyjnym układu nerwowego (125, 126), a większy poziom stresu oksydacyjnego zwiększa wydzielanie glutaminianu i powoduje dalej idącą stymulację tych receptorów (127, 128). Anatomia komórkowa koreluje z tą zależnością: receptory glutaminianu i NOS w mózgu i jelitach (129) istnieją blisko siebie.

Jak widać, zwiększony stres oksydacyjny w autyzmie implikuje możliwe problemy w produkcji energii i ekscytotoksyczności

Upośledzona produkcja energii w autyzmie

Rezonans magnetyczny wykazał zmniejszone poziomy ATP w mózgach autystów (130). Wyższy poziom mleczanów (131-132), wyższy pirogronian (133), wyższy amoniak i niższa karnityna (134) są charakterystyczne dla autystów, chociaż nie wszystkie dzieci z autyzmem mają niższe parametry. Różnice te sugerują dysfunkcje mitochondrialne w autyzmie, a odmienności mitochondrialne zostały wykazane w opisach przypadków osób z autyzmem (135-136).

Nadmierny NO w autyzmie może upośledzać produkcję energii, bezpośrednio albo przez ONOO. Nadmiar NO redukuje fosforylację oksydacyjną, obniża ATP i zwiększa poziom mleczanów (137). NO bezpośrednio ogranicza kompleks IV, powodując wyciekanie nadtlenków i ograniczenie GSHPx (3). ONOO selektywnie uszkadza kompleksy I i III (138). NO dezaktywuje koenzym A (CoA), zabierając mitochondriom tę cenną „walutę energetyczną” (78).

Wskaźniki eksytotoksyczności w autyzmie


Wyższy poziom zewnątrzkomórkowego glutaminianu w mózgu związany jest z ekscytotoksycznością, w szczególności gdy zaburzony jest metabolizm energetyczny (139). Dekarboksylaza glutaminiowa (GAD) przekształca glutaminian w GABA, która zmniejsza ekscytotoksyczność. Zmniejszenie GAD w mózgu umożliwia ekscytotoksyczność, zwiększając poziom glutaminianu i zmniejszając GABA.

Istnieje hipoteza, że w autyzmie jest niedobór GAD. Ilość GAD w mózgach autystów badanych pośmiertnie była obniżona o połowę (140). Pomiary te są zbieżne z wynikami. GAD w czerwonych krwinkach jest niższy u autystów (141), GAD (142), syntetaza glutaminiowa (143), transporter glutaminowy (144) i receptory GABA (9) są podatne na stres oksydacyjny (52).

Czy jest to efekt czy przyczyna większego stresu oksydacyjnego w autyzmie, zwiększona ekscytotoksyczność to rozsądna hipoteza i przedmiot zainteresowania klinicystów. Ekscytotoksyczność może zostać zwiększona przez doustne przyjmowanie ekscytotoksyn (145). Autor publikacji popiera innych lekarzy, doradzając pacjentom z autyzmem unikania ekscytotoksycznych polepszaczy smaku jak glutaminian sodu czy aspartam w pożywieniu i napojach.

Upośledzony układ cholinergiczny w autyzmie

 

Wyniki laboratoryjne i obserwacje kliniczne sugerują znaczne deficyty cholinergiczne u autystów. Aktywność receptorów cholinergicznych jest niższa w korze mózgowej autystów (50). Leczenie agonistami cholinergicznymi (146-147) albo prekursorami acetylcholiny (148) poprawia zachowanie u autystów.

Reakcja na bethanecol, specyficznego agonistę cholinergicznych receptorów muskarynowych, uzasadnia twierdzenie o upośledzeniu układu muskarynowego w autyzmie. Doustna dawka bethanecolu (2,5-12,5 mg) normalizuje zwiększone źrenice, poprawia perystaltykę jelit, reguluje sen i zachowanie u wielu dzieci z autyzmem. Czasami duża poprawa wiąże się juz z pierwszą dawką bethanecolu (146), autor publikacji potwierdza tę obserwację.

Neuroradiologia pokazuje zmniejszony przepływ krwi w mózgu przy autyzmie (149-150), co pogarsza się z wiekiem (151) i zwężenie naczyń krwionośnych w okolicach receptorów muskarynowych (152-153). Możliwe wytłumaczenie tak nagłej reakcji na bethanecol to nagła poprawa krążenia. Bethanecol może stymulować łatwo dostępne receptory muskarynowe w naczyniach krwionośnych i powodować dokrwienie mózgu. Tę hipotezę łatwo będzie zbadać.

Zaburzenia muskarynowe w autyzmie mogę generować większy stres oksydacyjny. Eksperymenty wykazały, że sygnały muskarynowe chronią komórki przed stresem oksydacyjny i apoptozą (154). Ilość receptorów muskarynowych zmniejsza się przy stresie oksydacyjnym (155).

Receptory muskarynowe są wrażliwe na toksyczne działanie NO (156) i bardziej niż inne typy receptorów, są wrażliwe na hamujące działanie ONOO (157) i innych oksydantów (158). Jak wskazano wcześniej, nadmiar NO w autyzmie może tłumić CoA. Poza rolą tego koenzymu w produkcji energii, jest on niezbędnym prekursorem acetylcholiny, cholinergicznego neuroprzekaźnika.

Niewystarczająca ilość CoA powoduje, że neurony cholinergiczne są wrażliwsze na różne toksyny, w tym nadmierne NO (51). Niskie CoA odgrywa znaczącą rolę w innych encefalopatiach (54).

Antyoksydacyjne składniki odżywcze w leczeniu autyzmu

Wysokie dawki witaminy C

Przeprowadzono podwójnie „ślepą”, z wykorzystaniem placebo, eksperymentalną próbę podawania 8 g na 70 kg masy ciała dziennie doustnej witaminy C w 2-3 podzielonych dawkach u dzieci autystycznych umieszczonych w ośrodkach (159). Niektórym z dzieci przed próbą podawano dawki do 4 g witaminy C. Próba obejmowała trzy dziesięciotygodniowe okresy. W drugiej i trzeciej fazie próby połowa dzieci otrzymywała najpierw placebo a potem witaminę C. Druga połowa – najpierw witaminę C a potem placebo.

Po każdym okresie przeprowadzano badania psychometryczne. Całkowity wynik na skali Ritvo-Freemana, która bada 47 zachowań społecznych, emocjonalnych, sensorycznych i językowych wykazał poprawę u grupy, która przeszła z placebo do witaminy C i pogorszenie w grupie, która z witaminy C przeszła do placebo (P=0.02).

Trzepotanie, machanie, bujanie się i kręcenie w szczególności uległo poprawie przy podawaniu witaminy C i u tych, którzy wyjątkowo zareagowali na to leczenie, była to poprawa „oczywista”, jak wskazali badacze. Nie zanotowano efektów ubocznych poza rozluźnieniem stolca, co może ograniczać ilość spożywanej przez dzieci witaminy C.

Witamina C to silny antyoksydant. To sugeruje – ale nie dowodzi – mechanizmu antyoksydacyjnego przy efekcie terapeutycznym. Efekty antyoksydacyjne witaminy C wydają się pasować do mechanizmów spotykanych w autyzmie. Witamina C zapewnia dobrą ochronę przed NO i ONOO (31). Witamina C chroni neurony przed neurotoksycznością glutaminianu (160-161). Witamina C blokuje hamowanie transportu glutaminianu przez NO (162), co ma miejsce głównie w obecności miedzi (163), która jest często podwyższona w krwi autystów (28).

Karnozyna

Karnozyna, naturalnie występujący aminokwas znajdujący się w dużych stężeniach w mózgu, jest silnym antyoksydantem i chroni neurony (164-166). „Podwójnie ślepa”, próba z wykorzystaniem placebo, trwająca 8 tygodni i polegajaca na przyjmowaniu 400 mg karnozyny, doustnie i dwa razy dziennie dowiodła znacznej poprawie u dzieci autystycznych, w porównaniu z placebo. Badania psychometryczne dowiodły poprawy w słownictwie (P=0.01), socjalizacji (P=0.01), komunikacji (P=0.03) i zachowaniu (P=0.04) (167). Efekty uboczne były zróżnicowane – sporadyczna hiperaktywność ustawała przy zmniejszeniu dawki, a żadne dziecko nie musiało przerwać próby z powodu efektów ubocznych.

Możliwe mechanizmy fizjologiczne działania karnozyny na autystów to jej prewencyjne działanie przed toksycznością NO (168), wiązanie się z wolnymi rodnikami i reakcyjnymi wodorotlenkami i możliwość wiązania się z metalami jak np. miedź (169). Kompleks miedź-karnozyna ma działanie antyoksydacyjne, podobne do SOD, co wykazano w badaniach in vitro (170).

Witamina B6

Wszystkie hipotezy związane z autyzmem powinny uwzględniać bardzo skuteczną próbę z podawaniem wysokich dawek witaminy B6, przeprowadzoną przez Bernarda Rimlanda. Wiele kontrolowanych prób wykazało, że witamina ta w powiązaniu z magnezem, poprawia zachowanie u wielu dzieci z autyzmem (148, 171-172). Poziomy B6 w osoczu są zwykle w normie, ale aktywność B6 przebadana dzięki panelowi EGOT, była znacząco niższa u grupy dzieci z autyzmem niz w grupie kontrolnej (26).

Kinaza pirydoksalu, która konwertuje B6 do jej aktywnej formy pirydoksal-5-fosfatu (P-5-P) może również działać słabiej u autystów. Wstępne badania sugerują bardzo słabe wiązanie się kinazy pirydoksalu w czerwonych krwinkach autystów, co odzwierciedla wysoki współczynnik Km (stałą Michaeli’ego) (26). Aktywność P5P we krwi jest poniżej normy u 40% dzieci z autyzmem (27).

Upośledzenie kinazy pirydoksalu u autystów jest niewyjaśnione. Niższy poziom cynku (26, 28) i status energetyczny w autyzmie to dobre wyjaśnienie tego fenomenu, gdyż kinaza pirydoksalu wymaga dla swojej aktywacji uwolnienia cynku z metalotioneiny, co jest zależne od ATP (173). Należy też rozważyć działanie czynników hamujących. Najsilniejsze z nich to grupy węglowe, które są egzogenicznymi związkami chemicznymi, takimi jak hydrazyna stosowana jako paliwo rakietowe (174). Są one potencjalnymi czynnikami hamującymi kinazę pirydoksalu. Powstają z oksydacyjnej zmiany lipidów w organizmie, protein i cukrów i są znacznie podwyższone w stanach chorobowych związanych z nadmiarem NO (22).

Podczas, gdy przyczyna słabej funkcji B6 w autyzmie nie jest wyjaśniona, możemy być pewni, że wpływ na to ma oksydacja. Nawet niewielki niedobór B6 ma związek z niższym GSHPx i aktywnością reduktazy glutationowej, zmniejszonym stężeniem glutationy i wyższym stopniem peroksydacji lipidów (30).

Niedobór B6 powoduje zaburzenia mitochondrialne i są one związane ze zwiększonym stresem oksydacyjnym (175-176). P5P jest niezbędne dla syntezy kluczowych składników mitochondrialnych: kryształów żelazo-siarka (dla kompleksu I, II ,III) i hemu (dla kompleksu IV( (177) oraz koenzymu Q10 (178). Badania wykazały, że P5P chroni neurony przed stresem oksydacyjnym, przez zwiększoną produkcję ATP i wykorzystywanie nadmiernego glutaminianu (179).

Obniżona funkcja B6 obniża prób ekscytotoksyczności. P5P jest niezbędny do powstania GAD, którego upośledzenie może spowodować nadmierna aktywację receptorów glutaminiowych, NO i stres oksydacyjny (180). P5P chroni GAD, który jest wrażliwy na uszkodzenia oksydacyjne (142), przed dezaktywacja (181) . P5P chroni też GSHPx w przewodzie pokarmowym przez formowanie kompleksów (182). Co można przewidzieć, wprowadzenie P5P do organizmu zwierząt zwiększa aktywność GAD w mózgu (183).

Z tych powodów pacjenci z autyzmem mogą odnotować poprawę przez duże dawki witaminy B6 poprzez zwiększenie produkcji energii, zmniejszenie ekscytotoksyczności, zwiększenie GADA i redukcję stresu oksydacyjnego. Leczenie B6 uzupełnia również naturalne jej niedobory spowodowane przez nadmierne oksydanty. B6 są bardzo podatne na uszkodzenia przez oksydanty takie jak wodorotlenek (OH) i dwutlenek (O2) (184-186). Oksydacyjne uszkodzenie B6 ma wpływ na liczne enzymy i neuroprzekaźniki u autystów.

Magnez

W eksperymentach na zwierzętach niedobór magnezu zwiększał NO (187), peroksydy lipidowe (188) i obniżał antyoksydanty w osoczu (189). Niższy poziom magnezu wyraźnie sprzyja oksydacji. Suplementacja magnezem obniża stres oksydacyjny w eksperymentach na zwierzętach z wysokim poziomem stresu oksydacyjnego (190).

Jako grupa dzieci z autyzmem mają niższy poziom magnezu w czerwonych krwinkach (26). Podwójnie ślepe próby wykazały poprawę behawioralną u dzieci, którym podawano wysokie dawki B6 i magnezu ale nie było poprawy, gdy podawano wyłącznie magnez albo B6 (191). Ten synergizm może mieć ważną funkcję. Na przykład zależna od B6 kinaza, która ma wpływ na rożne funkcje muskaryczne i GABA-nergiczne  wymaga zarówno B6 jak i magnezu.

Magnez chroni też przed stresem oksydacyjnym dzięki funkcjom nie związanym z B6/

Produkcja NADPH w celu redukcji glutationu wymaga magnezu. Syntaza ATP, która katalizuje produkcję energii poprzez fosforylację oksydacyjną, jest wrażliwa na magnez (192). W mózgu magnez blokuje nadmierne podrażnienie receptorów ekscytotoksycznych modulując kanały wapniowe (193).

Cynk

Niższy poziom cynku u autystów został potwierdzony licznymi badaniami. Zawartość cynku w czerwonej krwince, bardzo wrażliwy wskaźnik niedoboru cynku, jest wyraźnie niższy u autystów (26) a w indywidualnych przypadkach może być tak niski jak połowa najniższej wartości granicznej dla grupy kontrolnej (194). Cynk w osoczu jest poniżej normy u 40% dzieci z autyzmem (28).

Niski poziom cynku to wyższe ryzyko stresu oksydacyjnego. U zwierząt dieta uboga w cynk zmniejsza całkowity poziom glutationu, witaminy E, GST, GSHPx i SOD, a zwiększa ilość peroksydów lipidowych i wolnych rodników w tkankach, mitochondriach i membranach komórkowych (195-198). U starszych osób suplementacja cynkiem zmniejsza ilość peroksydów lipidowych (197). U diabetyków z retinopatią suplementacja cynkiem zwiększa poziom GSHPx i zmniejsza poziom peroksydów lipidowych (200).

Cynk ma wpływ na układ pokarmowy. Niedobór cynku u zwierząt zwiększa NOS w układzie pokarmowym i podatność na infekcje gastrologiczne (201). Z drugiej strony suplementacja cynkiem zmniejsza lipoksydację układu pokarmowego (202) i zmniejsza przepuszczalność jelit (203).

Klinicyści coraz częściej doceniają cynk jako stały suplement w leczeniu autyzmu. William Walsh, który zebrał dane o cynku i miedzi wśród ponad 3.500 dzieci z autyzmem w Pfeiffer Treatmen Center stwierdził, że wysokie dawki cynku (2-3 mg/kg wagi ciała dziennie jako dobrze wchłaniany pikolinian cynku) są niezbędne dla znormalizowania poziomów cynku i pozytywnej reakcji klinicznej (204).

Okresowe mierzenie cynku w osoczu jest wykorzystywane po to, aby upewnić się, że nie przekroczył on norm laboratoryjnych. W dniu badania nie podaje się cynku, aby nie zaburzyć wyniku. Suplementacja cynkiem obniża poziom miedzi. Bada się zatem poziom miedzi w osoczu, aby uniknąć niedoboru (205).

Nadmiar miedzi jest ewidentny w przypadku autyzmu. Wyższy poziom miedzi w osoczu (36), niższa ceruloplazmina (6) i wyższy poziom niezwiązanej miedzi w osoczu (205) to częste wyniki u dzieci z autyzmem. Miedź, szczególnie niezwiązana, jest prooksydacyjna. Suplementowanie jej jest rzadko niezbędne w autyzmie i nawet małe dawki miedzi mogą mieć niekorzystne efekty behawioralne (205).

Wyższy stosunek miedzi do cynku w osoczu (u autystów wynosi 1.63, a w grupie kontrolnej 1.15, P<0.0001) (36), jest w znaczący sposób powiązany ze stresem oksydacyjnym w chorobach neurodegeneracyjnych (206). Suplementacja cynkiem normalizuje stosunek miedź/cynk (205).

Wysokie dawki cynku mogą obniżyć poziom manganu. Dawki manganu podawane oddzielnie z cynkiem w proporcji 5 mg manganu na 30 mg cynku przynoszą korzyść, należy również monitorować ilość manganu w serum aby uniknąć nadmiaru (205).

Funkcja antyoksydacyjna cynku jest nie do przecenienia. Jest wiele ważnych mechanizmów:

- cynk chroni grupy –SH przez oksydacją – np. chroni kluczowy enzym antyoksydacyjny GSHPx (195). Pierwszym rezultatem niedoboru cynku to utrata grup –SH przez membrany i w konsekwencji ich osłabienie (207)

- cynk współzawodniczy z prooksydacyjnymi metalami jak miedź i żelazo  i zapobiega katalizowanej przez metale produkcji wolnych rodników (200). Enzymy zawierające miedź są podatne na autooksydację, czemu zapobiega cynk (198). Oksydacja membran spowodowana przez miedź jest również uniemożliwiona przez cynk (208)

- cynk to niezbędny składnik miedziowo-cynkowego SOD, kluczowego enzymu antyoksydacyjnego. Nawet niewielki niedobór cynku u ludzi zmniejsza aktywność SOD (209). Gdy brak cynku SOD staje się prooksydacytjny, katalizując biomolekularny atak ONOO (148). SOD bez cynku jest neurotoksyczne (210).

- cynk indukuje syntezę metalotioneiny (MT) (211), skutecznego pogromcy wolnych rodników (w tym ONOO) (212) i sekwestranta miedzi i innych metali ciężkich (213, 214). U zwierząt wysokie dawki cynku powodują wyższe poziomy MT w układzie pokarmowym (215). Średni niedobór cynku u zwierząt, kiedy negatywne efekty zdrowotne nie są zwykle jeszcze jawne, związany jest ze znaczną redukcją MT w siatkówce oka (213).

MT zwykle wzrasta jako reakcja obronna na stres oksydacyjny, ale zmniejsza się wówczas gdy jest niedobór cynku (214).

MT blokuje toksyczność miedzi ale ten efekt ochronny nie działa przy nadmiarze NP., który wyciąga miedź z MT, powodując peroksydację lipidów i apoptozę (46). W mózgu MTIII, czynnik ograniczający wzrost neuronów, jest szczególnie wrażliwy na usuwanie miedzi przez oksydanty (216). Taki mechanizm może być związany z większym rozmiarem mózgu u dzieci z autyzmem (204).

- cynk wspiera fizjologiczną blokadę receptorów glutaminianowych (139), zmniejszając ekscytotoksyczność

Różne biocząsteczki są chronione przed oksydacją przez cynk. Tworząc kompleksy z fosfolipidami (217) cynk blokuje oksydację membran tłuszczowych (209). Cynk blokuje peroksydację wielonasyconych tłuszczy nie połączonych z membranami (218). Cynk generalnie hamuje oksydację enzymów i innych protein (198), w tym tych z funkcjonalnymi grupami –SH podatnych na łagodne stany oksydacyjne: Na, K-ATPaza, CA-ATPaza, akwaporyna, kanały wapniowe, kanały NMDA-wapń (207).

Hipotetycznie stres oksydacyjny może zmniejszyć retencję cynku. Na poziomie cząsteczkowym oksydanty (w tym NO) wyrzucają cynk z protein, łącznie z MT (197, 216, 219, 220). Potrzeba badań aby określić, czy ten fenomen rozciąga się na zmniejszoną retencję cynku w całym organizmie w warunkach większego stresu oksydacyjnego. Schizofrenicy mają zmniejszone wydalanie cynku z moczem w odpowiedzi na wysokie dawki B6 (221), co może mieć związek z antyoksydacyjnymi efektami B6.

Selen

            Średni poziom selenu w czerwonej krwince jest niższy u dzieci z autyzmem (26) i może to mieć związek z niższymi poziomami GSHPx (23-24). Jak wcześniej wskazano, aktywność GSHPx odpowiada obniżonym poziomom selenu (31). Lekarze często podają autystom doustnie selen w dawce 50-300 mcg dziennie.

GSHPx jest nie do zastąpienia w zadaniu chronienia organizmu przed oksydacją, w szczególności w ochronie mitochondriów, które nie zawierają katalazy chroniącej przed peroksydami (222). Dodatkowo, GSHPx zapewnia ochronę przed organicznymi wodoroperoksydami, które podtrzymują niszczącą reakcję łańcuchową lipoksydacji (85, 222).

Niższa aktywność GSHPx przy niedoborze selenu związana jest z uszkodzeniami peroksydacyjnymi i dysfunkcją mitochondriów (29). Fizjologiczny efekt niedoboru selenu może zostać częściowo zrekompensowany dawkami witaminy E. (31)

GSHPx jest wrażliwy na dezaktywację przez miedź (182) i rtęć (223). Ekspozycja na rtęć skutkuje zmniejszoną aktywnością GSHPx i zwiększoną peroksydacją lipidową (224). U zwierząt GSHPx jest chronione suplementacją P5P (223) i cynku (225).

Mniejsza aktywność GSHPx w autyzmie umożliwia intensywniejszą peroksydację lipidową membran, która upośledza działanie receptorów i enzymów, prawdopodobnie z powodu zmian dostosowawczych i zmienionych wiązań (226). Peroksydacja lipidowa ogranicza odbiór receptorów muskarynowych, adrenergicznych, serotonicznhych i insulinowych, jak również Na,K-ATPazę i syntezę glutaminową (227).

Glutation w leczeniu autyzmu

W jednym z badań dożylne podawanie glutationu poprawiło stan pacjentów z chorobą Parkinsona (105). Podobnie, dożylny glutation poprawia zachowanie wielu dzieci z autyzmem, włącznie z zahamowaniem licznych stereotypowych zachowań, jak np. trzepotania rękami. Rzadko pojawiają się reakcje związane z histaminami (katar, kaszel łzawienie z oczu) (93).

Doustne GSH, w dawce do 30 mg/kg wagi ciała dziennie w kilku dawkach pomogło niektórym dzieciom z mukowiscydozą, która jest stanem oksydacyjnym (126). Autor uważa, że podobne dawki doustnego GSH pomogły kilku dzieciom z autyzmem. Odwrotna do zamierzonej reakcja na doustne GSH wystąpiła u dzieci z niskim poziomem cynku w osoczu. Ta reakcja mogła być skutkiem nagłej indukcji metalotioneiny przez GSH przy czasowym niedoborze cynku (228).

Doustne GSH jest dobrze przyswajalne. U zwierząt poziom GSH w osoczu podwaja się w ciągu 2 godzin od dużej dawki doustnej, głównie z powodu absorpcji nienaruszonego GSH (229). Zwiększone poziomy GSH w organach zwierzęcych można przypisać absorpcji nhienaruszonego GSH (230). U zdrowych osób doustna dawka GSH 15 mg/kg zwiększa poziom GSH w osoczu od 2 do 5 razy (229).

Potrzeba GSH w celu zaleczenia śluzówki układu pokarmowego może przekraczać nawet te dawki (229), co można przewidywać u autystów. Śluzówka wykorzystuje GSH z układu pokarmowego (231-232) i osocza (231) aby radzić sobie z oksydacją. Przy normalnej fizjologii wydzielanie GSH z żółcią odzwierciedla dużą część całkowitej produkcji GSH, a żółć regularnie obmywa całą śluzówkę jelita wydzielanym GSH.

Poważne uszkodzenie jelita cienkiego i grubego, z opuchlizną i degeneracją tkanki to efekt niedoboru GSH w jednym z eksperymentów; można temu zapobiec podając doustne GSH które jest powiązane ze zwiększonym GSH w śluzówce (233). U zwierząt poziom GSH w śluzówce podnosi się w nagły sposób po doustnym podaniu GSH, jednak w mniejszym stopniu w krętnicy (234). Doustne GSH może obniżyć poziom stresu oksydacyjnego w jelitach autystów.

Zauważono też silne właściwości antywirusowe GSH w badaniach in vitro (235).

Oksydacja w nowych kierunkach terapii

Podskórne zastrzyki witaminy B12 w formie metylkobalaminy w ilości 1250-7500 mcg co tydzień albo i codziennie znacznie poprawiają zachowanie dzieci z autyzmem (236). Jeden z pośredników B12 – kobalamina – jest bardzo wrażliwa na uszkodzenia oksydacyjne (237), a zatem skutkiem zwiększonego stresu oksydacyjnego może być funkcjonalny niedobór B12.

Zwiększenie NO i azotynów w autyzmie wysyła B12 ostrzegawczy sygnał. Pośrednia forma B12 reaguje w szczególny sposób z NO. (238-240) a azotyny dezaktywują metylkobalaminę (241). NO wiąże B12 i upośledza funkcje enzymatyczne, np. fizjologiczne stężenie NO w studiach in vivo hamuje syntezę metioninową (242). Duże dawki B12 może odwrócić ten fizjologiczny efekt nadmiaru NO (243).

Doustne podawanie kwasu folinowego zwiększa poziom glutationu i stosunek GSH do GSSG u autystów (25), w ten sposób powstaje kwestia funkcjonalnego poziomu kwasu folinowego u autystów. 5-MTHF jest bardzo podatny na oksydację (241, 244) i jego degradacja jest intensywniejsza im większy jest stres oksydacyjny (245). Niedobór kwasu folinowego (który może być zwiększony przez niedobór B12) zmniejsza poziomy ATP i zwiększa ekscytotoksyczność (246).

Suplementacja aminokwasami może być użyteczna wśród autystów. Poziomy cysteiny w osoczu były o wiele niższe u 286 niesuplementowanych dzieci autystycznych (236). Cysteina jest produktem pochodzącym z metioniny i zapewnia trzecią cząsteczkę w glutatione i metalotioneinie.

Doustna n-acetylp-cysteina (NAC) jako źródło cysteiny jest dobrze tolerowana przez dzieci z autyzmem, nie jest tolerowane podawanie cysteiny. Dożylny NAC (150-600 mg NAC + 1000-2000 mg witaminy C + 1 ml dwuwęglany sodu) poprawił zachowanie u niektórych dzieci (236).

Pfeiffer Treatment Center jest zwolennikiem dużych dawek cynku z właściwym suplementem doustnym (247), który zawiera aminokwasy tworzące MT. Wstępne dane wskazują na to, że ta tak zwana formuła „Metallothionein Promotion” zwiększa poziomy MT (37). Niektórzy rodzice potwierdzają poprawę u dzieci z autyzmem po intensywnej ekspozycji na naturalne światło słoneczne. Promieniowanie ultrafioletowe powoduje nagłe wydzielanie metalotioneiny (248), a zatem może przynieść korzyść przy wystarczającym poziomie cynku. (…)

Dieta bezkazeinowa i bezglutenowa poprawia zachowanie dzieci z autyzmem, prawdopodobnie przez redukcję skutków nadmiaru opioidów (251). Wysoki poziom peptydów z kazeiny i glutenu odnotowano w moczu autystów (252), prawdopodobnie z powodu oksydacji enzymu niezbędnego do całkowitego trawienia kazeiny i glutenu (253). Dodatkowo oksydacja wzmacnia wiązania opioidowe a GSH je osłabia (254).

Suplementacja kwasami tłuszczowymi przynosi korzyści autystów (255). Niższe koncentracje nienasyconych kwasów w osoczu (256) i membranach czerwonych krwinek (8, 257) sugerują oksydacyjne wydalanie tych kluczowych składników budowy membran i prekursorów prostaglandyn. Wydalanie kwasów omega-3 i omega-6 jest charakterystyczne dla schizofrenii i ma związek ze zwiększoną ilością peroksydów lipidowych (258).

Kwas EPA jest niższy w membranach czerwonych krwinek dzieci z autyzmem, a w grupie dotkniętej regresem jest niższy poziom kwasu arachidonowego (8). Olej z ryb, bogaty w EPA tłumi produkcję NO i innych wolnych rodników (30, 259) i zwiększa aktywność GST i mitochondrailnego SOD (259). Poziomy NO i peroksydów lipidowych w mózgu są niższe u zwierząt suplementowanych olejem z ryb (260).

Podawanie oleju z ryb zwierzętom z niedoborem B6 powoduje zwiększenie peroksydacji lipidowej (261). Zaleca się w autyzmie wcześniejsze podawanie witaminy B6 i innych antyoksydantów aby zapobiec tworzeniu się toksycznych peroksydów lipidowych.

Ciągłe podawanie oleju z ryb dzieciom autystycznym skutkuje znacznym obniżeniem się poziomu DGLA w membranie czerwonej krwinki (8). DGLA to prekursor dla prostaglandyny-1, która wzmacnia ścianki jelita i odporność. W związku z tym dzieci, którym podawany jest olej z ryb powinny dostawać równoważącą go dawkę oleju z wiesiołka zawierającego GLA – prekursor DGLA.

Po naładowaniu antyoksydantami dzieci dobrze tolerują dawkę 3 gramów oleju z ryb i 1 grama oleju z wiesiołka (262). Optymalne dawki różnią się w zależności od okresu podawania i potrzeb jednostki.

Laboratoryjne określenie poziomu stresu oksydacyjnego

Wykorzystanie markerów oksydacji w diagnostyce autystów to temat nowy. Różne badania krwi, moczu, stolca i wydychanego powietrza (263) mogą być użyteczne w określaniu optymalnych dawek i kombinacji składników odżywczych oraz innych interwencji.

Niektóre możliwości diagnostyczne dotyczą poziomu peroksydów lipidowych, 4-hydroksynonenalu (4-HNE), malondialdehydu (MDA), izoprostanów, nitrotyrozyny, oksydowanych kwasów nukleinowych, zaawansowanych produktów końcowych glikacji, apoptozy komórkowej, stężenia antyoksydantów i składników odżywczych, poziomu azotynów i azotanów, zdolności enzymów do wiązania. Dziesięciokrotnie wyższe poziomy neopteryny (264), wskaźnika nadmiernej syntezy NO (76) sugerują przydatność tego badania.

W obszarze badawczych mózg i jelita autystów powinny być diagnozowane pod kątem specyficznych markerów oksydacyjnych. Konwencjonalne badanie tkanki mózgowej autystów może nie wykryć utraty neuronów z powodu apoptozy, wskaźnika stresu oksydacyjnego (265), gdyż bardzo szybko organizm usuwa komórki poddane apoptozie (266).

Wskazówki na przyszłość

W tym artykule podkreślono dane i pomysły sugerujące, że większy stres oksydacyjny w autyzmie może być istotny w ekspresji objawów autystycznych i być może w patogenezie autyzmu. Jeżeli okaże się to ważnym czynnikiem przy badaniu autyzmu, na znaczeniu zyska też właściwe odżywianie autystów (267), gdyż jest to droga do modulowania stresu oksydacyjnego.

Na pewno, aby zapobiec rozwojowi autyzmu musimy zmienić pewne szkodliwe nawyki. Konsumpcja wolnych rodników w pożywieniu smażonym w olejach wielonasyconych (268) musi zostać ograniczone. Wchłanianie ekscytotoksycznych polepszaczy smaku, chlor, azotyny i miedź w wodzie – również należy poddać ponownej ocenie. Prooksydacyjne (269, 271) i antyoksydacyjne (272, 275) działanie leków musi zostać bardziej zasygnalizowane.

Stres oksydacyjny można leczyć, jego wpływ może zacząć się już w życiu płodowym. Trzeba oszacować, jak oksydacja wpływa na ciążę i jak zmienia rozwój dziecka. Np. niedobór cynku u matki powoduje oksydacyjne uszkodzenie DNA u noworodków małp (276). Wszechobecne polepszacze smaku i ekscytotoksyny, glutaminian sodu – przechodzą przez łożysko i powodują neurotoksyczność u płodów gryzoni (277).

Wyższe NO stwierdzone w autyzmie może dostarczyć inspiracji do wyjaśnienia etiologii, rozwoju i kierunków leczenia autyzmu. Infekcje wirusowe mogą zwiększyć produkcję NO w mózgu i innych tkankach, a zatem wyższa produkcja NO w autyzmie sprawa, że tym bardziej trzeba badać autystów na przeciwciała wirusowe.

Wyższe NO w autyzmie może spowodować skupienie uwagi na antyoksydantach niszczących NO. Witamina C dobrze zwalcza NO (278), jak również melatonina i kwas moczowy. Melatonina niszczy zarówno NO jak i ONOO (279). Doskonale niweluje stres oksydacyjny w mózgu i układzie pokarmowym (280-281), zwiększa aktywność GSHPx (282) i skutecznie leczy zaburzenia snu (97).

Kwas moczowyto 60% całkowitej ilości antyoksydantów w osoczu (283). Skutecznie wiąże niektóre metale, a w szczególności niszczy NO i ONOO (284). Podawanie doustnej inozyny, prekursora kwasu moczowego może dać dobry rezultat przy stwardnieniu rozsianym (45) i w autyzmie.

Badanie i poprawianie funkcji mitochondrialnych aby zwiększyć produkcję energii powinno mieć wysoki priorytet w leczeniu autyzmu. Acetyl-L-karnityna i kwas alfa-liponowy zwiększają funkcję mitochondriów i redukują stres oksydacyjny u zwierząt (119). Doustne podawanie L-karnityny, metabolitu mitochondriów, poprawia zachowanie u dzieci z zespołem Retta (285) i w trakcie są badania nad skutkami podawania L-karnityny autystom.

Jedno z centrów uniwersyteckich stosuje leczenie pacjentów cierpiących na choroby mitochondrialne kombinacją koenzymu O10, witaminy E i witamin z grupy B (186). Koenzym Q10 również podawany oddzielne to ciekawa interwencja w autyzmie. Wzmaga produkcję ATP przenosząc elektrony i protony w łańcuchu elektronowym i chroni mitochondria przed oksydantami (287). Witamina B3 jest niezbędna do produkcji energii przez mitochondria i skuteczna w leczeniu schizofrenii (288) ale nie poświęca się jej wiele uwagi w autyzmie.

Kliniczne znaczenie podatności enzymów, receptorów, protein G i witamin na stres oksydacyjny jest niezbadane (tabela 8). Glukoza-6-fosfatodehydrogenaza (G-6-PD), która odgrywa ważną rolę w redukcji GSH, jest tylko jedną z wielu podatnych na oksydację substancji, istotną dla autystów.

Tabela 8. Podatność na degenerację oksydacyjną lub spowodowaną przez azot

Enzym albo czynnik                                                 Pozycja w bibliografii

Dekarboksylaza glutaminowa                         (142)

Transportery glutaminianu                                         (144)

Syntetaza glutaminianowi                                          (143), (227)

Kanały GABA                                                                    (289)

Witamery B6                                                              (184-186)

Pirydoksylkinaza                                                        (174)

Enzymy zależne od B6                                               (290)

Tetrahydrofolate                                                        (241), (244)

Syntaza metioninowa                                                 (291)

Witamery B12                                                              (237-241)

Glukoza-6-fosfatodehydrogenaza (G-6-PD)              (292)

Koenzym A                                                                (78)

Alfa-KGDHC                                                            (31), (250-251)

Na,K-ATPaza, kanały wapniowe, akwaporyna         (207)(227)

Katalaza                                                                               (293)

Peroksydaza glutationowa                                                (182)

Podsumowanie

Dane wykazują istnienie dużego stresu oksydacyjnego w autyzmie. Obserwacje kliniczne reakcji na antyoksydanty sugerują, że stres oksydacyjny jest ważny w ekspresji objawów autystycznych. Powstaje pytanie, czy jest on bardzo istotny z punktu widzenia jego mechanizmu.

Próby podawania antyoksydantów z mierzeniem biomarkerów oksydacyjnych, mogą pomóc w naświetleniu kwestii istotności mechanizmu oksydacyjnego. Podczas oczekiwania na wyniki tych badań, lekarze i rodzice podają dzieciom bezpieczne dawki składników odżywczych – lepiej wcześniej niż później. Byłoby przydatnym określanie wysokości tych dawek na podstawie laboratoryjnych wyników stresu oksydacyjnego.

Wstępne dane o lipofuscynie są bardzo ważne i powinno się jak najszybciej wykonać dalsze badania w tym kierunku. Analiza lipofuscyn może doprowadzić do ustalenia specyficznej toksyny albo etiologii infekcji. Jest to przynajmniej silna wskazówka, że neurodegeneracja w autyzmie może być zmieniona przez wpływ oksydacyjny.
W tym kontekście przewlekły niedobór witaminy E u dzieci może pomóc nam zrozumieć potencjalne efekty nadmiernego stresu oksydacyjnego na rozwój. Niedobór witaminy E to zaburzenie neurologiczne, które jest skutkiem słabej ochrony antyoksydacyjnej od urodzenia (294, 295). Występuje odkładanie się lipofuscyn (294, 296) i objawy neurologiczne – zaburzenia chodu, dziwne ruchy gałek ocznych – w wieku 18-24 miesięcy (294) podobnie jak przy regresie autystycznym.

Poza tym analogiami, witamina E ma konkretne przełożenie na funkcjonowanie autystów i zdrowych dzieci. Neurologiczne komplikacje niedoboru witaminy E istnieją u pacjentów z niedoborami immunologicznymi i enteropatią, pacjentom tym zaleca się monitorowanie poziomu witaminy E (297). Profil immunologiczny w autyzmie przypomina niedobory immunologiczne (296) i poza dyskusją pozostaje kwestia enteropatii. Wstępne dane sugerują niższe poziomy witaminy E w osoczu u dzieci z autyzmem (26). Potrzeba więcej danych na ten temat łącznie z badaniem funkcjonalnego poziomu przez hemolizę czerwonej krwinki.

Co optymistyczne, uszkodzenia oksydacyjne są przynajmniej częściowo odwracalne. Dezaktywacja enzymów jest odwrócona przez podanie wystarczających dawek antyoksydantów (174). Nawet elementy strukturalne jak cytoszkielet mogą zostać odnowione przez GSH (299).

Jeśli nauczymy się, że stres oksydacyjny to ważny mechanizm w autyzmie, wówczas nasze poszukiwanie podłoża genetycznego i środowiskowego będzie bardziej ukierunkowane. Z analizy uszkodzeń oksydacyjnych nasza nauka będzie mogła szybciej określić przyczyny, leczenie i sposoby prewencji autyzmu.

Wpływ tioli na toksyczność rtęci

Wpływ tioli, dwutioli i wchodzących w interakcje ligand na toksyczność rtęci

James P.K. Rooney

Centre for Synthesis and Chemical Biology, Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland

  1. Wstęp

Toksyczność rtęci jest przedmiotem wzrastającego zainteresowania, jak i pojawiających się kontrowersji w medycynie współczesnej. Chociaż rtęć od setek lat jest znana jako substancja toksyczna, pozostało do wyjaśnienia wiele jeszcze kwestii odnośnie mechanizmów jej wpływu na procesy biochemiczne zachodzące w ciele. Na tle trwającej od dziesięcioleci debaty dotyczącej wykorzystywania rtęci w plombach amalgamatowych, pojawiły się ostatnio kontrowersje w zakresie stosowania zawierającego rtęć środka konserwującego tiomersalu oraz w zakresie ekspozycji na rtęć poprzez konsumpcję ryb. Pojawiły się także spekulacje, czy ekspozycja na metale ciężkie takie jak rtęć może mieć wpływ na etiologię różnych chorób neurodegeneracyjnych, takich jak stwardnienie zanikowe boczne (choroba Lou Gehringa), choroba Alzheimera, stwardnienie rozsiane i choroba Parkinsona (Clarkson 2002; Muter et al., 2004). Nadto coraz więcej zainteresowania poświęca się możliwej roli tiomersalu, zawierającego rtęć w formie etylowanej, w etiologii zaburzeń rozwoju, takich jak autyzm (Geier and Geier 2006, Muter et al. 2004; Parker et al. 2004).

Każda z wyżej wymienionych kwestii odnosi się do przewlekłego zatrucia rtęcią, odnośnie którego zgromadzono bardzo skąpe dane – w tym do ustalenia pozostaje jeszcze maksymalny bezpieczny poziom ekspozycji (Berlin, 2003; Risher and Amler, 2005). Podczas gdy toksykologia kliniczna różnych form ostrego i przewlekłego zatrucia rtęcią została dokładnie opisana w ostatnich pracach (Clarkson, 2002l Clarkson et al. 2003), a przedmiotem innych jest analiza zatrucia rtęcią w aspekcie biologii molekularnej (Bridges and Zalups, 2005; Zalups, 2000), brak jest prac łączących dokonania obydwu tych specjalistycznych kwestii.

Celem tej pracy jest próba odnalezienia takiej zbieżności poprzez rozważenie klinicznych, diagnostycznych i terapeutycznych implikacji wynikających z pogłębionej analizy zatrucia rtęcią w aspekcie biologii molekularnej. Praca skupia się na wpływie tioli, dwutioli i wchodzących w interakcje ligand, takich jak proteiny zawierające cynk i selen, na toksyczność rtęci na poziomie cząsteczkowym (patrz Tabela 1). Zawiera również ocenę wpływu aspektu molekularnego na kliniczną diagnostykę w kierunku zatrucia rtęcią w kontekście przewlekłej długoterminowej ekspozycji na różne formy rtęci i prawdopodobieństwa selektywnej retencji rtęci nieorganicznej w mózgu.

2. Formy rtęci

2.1. Rtęć metaliczna/Hg0

Ekspozycja na rtęć może pochodzić z różnych źródeł, a sama rtęć obecna jest w środowisku w kilkunastu różnych formach. Rtęć metaliczna (Hg0) nie jest dobrze przyswajana w drodze trawienia, ale bardzo dobrze przyswajana jest w drodze inhalacji. Znajduje zastosowanie w termometrach, plombach amalgamatowych oraz kilkunastu innych substancjach używanych w gospodarstwie domowym i przemyśle. Pozostawiona w temperaturze pokojowej rtęć metaliczna przekształca się w opar, który jest doskonale absorbowany przez płuca. Po absorpcji ta forma rtęci jest rozpuszczalna w tłuszczach, ma zdolność przekraczania bariery krew-mózg i łożyska, jak również może uleć – przy udziale nadtlenku wodoru – utlenieniu do formy nieorganicznej (Hg2+), która jest odkładana w mózgu przez wiele lat (Braunwald er al., 2001, Hargreaves et al. 1988, Opitz et al. 1996, Takeuchi et al. 1989, Vahter et al. 1994). Warto zauważyć, że plomby amalgamatowe wydzielają opary rtęci, które są wdychane i absorbowane do układu krwionośnego (Brauwald et al., 2001, Clarkson et. al. 2003).

Tabela 1

Podsumowanie substancji wykorzystywanych w leczeniu zatrucia rtęcią

molekuła Typ Rola w leczeniu zatrucia rtęcią Inne funkcje biologiczne
ZnCynk Minerał Wzmaga produkcję białek wiążących metale, metalotionein, które uważane jest za substancję chroniącą mózg przed ekspozycją na opary rtęci Ma wpływ na syntezę i stabilizację białek, DNA i RNA. Pełni rolę strukturalną w rybosomach i membranach. Reguluje produkcję hormonów sterydowych i białek aktywujących transkrypcję genów. Kluczowy dla produkcji nasienia, umożliwia rozwój w życiu płodowym. Kompetycyjny inhibitor wchłaniania miedzi.
SeSelen Minerał Ma wpływ na dystrybucję i redukcję toksyczności rtęci u zwierząt, jednakże są dowody negatywnych interakcji z dwutiolowymi związkami chelatującymi, jak DMPS i DMSA u zwierząt zatrutych rtęcią W formie selenocysteiny jest składnikiem peroksydazy glutationowej i enzymów dejodynazy. Selen ma wąski indeks terapeutyczny, a jego toksyczna dawka zaczyna się od 400 ug/dzień
NACN-acetyl cysteina Endogeniczny tiol Zwiększa poziom GSH. Niektórzy lekarze wykorzystują ten związek w terapii zatrucia rtęcią, gdyż GSH zwiększa wydalanie rtęci metylowanej z żółcią. Jednakże doświadczalnie udowodniono, że NAC i GSH mają udział w dystrybucji rtęci do mózgu i nerek. Antyoksydant. Dożylna NAC jest odtrutką na przedawkowanie acetaminofenu. W formie wziewnej ma działanie mukolityczne poprzez rozdzielanie dwusiarkowych wiązań w mukoproteinach. Zażywana doustnie chroni przed nefropatią wywołaną przez podanie kontrastu
GSHGlutation Endogeniczny tiol Ma wpływ na wydalanie metyrtęci z żółcią. Uważa się, że międzykomórkowy GSH pełni funkcję ochronną dla komórek. Z drugiej strony są dowody na jego wpływ na absorpcję rtęci nieorganicznej i rtęci metylowanej do nadnerczy Antyoksydant, który działa jako międzykomórkowy neutralizator wolnych rodników. Przy braku enzymu G6PD, brak możliwości regenerowania glutationu w czasie stresu oksydacyjnego prowadzi do rozpadu czerwonych krwinek
ALAKwas alfa-liponowy Endogeniczny dwusiarczek Metabolizowany wewnątrzkomórkowo do DHLA (kwas dihydroliponowy, ditiol). U licznych gatunków ssaków ma działanie chroniące mózg przed zatruciem rtęcią. Istotnym wydaje się rozmiar dawki i ich częstotliwość, niewłaściwe dawkowanie w widoczny sposób zwiększa poziom zatrucia. Ma dostęp do wszystkich tkanek organizmu, łącznie z mózgiem Koenzym w kompleksach enzymów: dehydrogenazy pirogronianowej, dehydrogenazy alfa-ketoglutarowej i dehydrogenazy łańcuchowego alfa-ketokwasu. Zwiększa wewnątrzkomórkowy poziom glutationu. Regeneruje witaminy C i E.
DMPS Syntetyczny ditiol Tworzy mocne wiązania z molekułami rtęci nieorganicznej. Z powodu niskiej masy cząsteczkowej jest łatwo filtrowany przez nerki i wydalany z moczem. Nie chelatuje rtęci z mózgu. Chelatuje inne metale ciężkie, w tym arszenik, ołów i kadm. Chelatuje również minerały takie jak miedź, chrom i cynk. Jest używany w leczeniu choroby Wilsona.
DMSA Syntetyczny ditiol Tworzy mocne wiązania z molekułami rtęci nieorganicznej. Z powodu niskiej masy cząsteczkowej jest łatwo filtrowany przez nerki i wydalany z moczem. Nie chelatuje rtęci z mózgu. Chelatuje inne metale ciężkie, w tym arszenik, ołów i kadm. Chelatuje również minerały takie jak miedź i cynk. Znajduje zastosowanie w medycynie nuklearnej.

2. 2. Rtęć nieorganiczna/Hg2+

Rtęć nieorganiczna znajduje się w licznych produktach kosmetycznych i gospodarstwa domowego (Ozuah, 2000), jak również znajduje zastosowanie w przemyśle. Jest dobrze absorbowana w drodze trawienia i przez skórę. Może przybierać formę metabolitu oparów rtęci metalicznej (przy wchodzeniu do komórki), rtęci metylowanej i etylowanej (Clarkson, 2002). Stosunkowo niewielka ilość rtęci w formie nieorganicznej przekracza barierę krew-mózg, większość zostaje wydalona z moczem lub kałem albo odkłada się w nerkach. Jednakże, rtęć nieorganiczna może przybierać w mózgu formę innych rodzajów rtęci i pozostaje w mózgu przez lata (Takeuchi et al., 1989, Vahter et al. 1994).

2. 3. Rtęć organiczna

Ekspozycja na rtęć organiczną u ludzi zazwyczaj ma miejsce w dwóch formach: rtęć metylowana (CH3Hg+) – z konsumpcji ryb; rtęć etylowana(C2H5Hg+), która jest składnikiem tiomersalu używanego w szczepionkach. Rtęć organiczna może być przedmiotem absorpcji przez płuca, jest również dobrze przyswajana w układzie trawiennym. Tylko niewielkie ilości są absorbowane przez skórę. Bezpieczeństwo tiomersalu jest aktualnie przedmiotem gorącej debaty. Rtęć organiczna bez przeszkód przekracza barierę krew-mózg, łożysko, pojawia się w mleku kobiecym i koncentruje się w nerkach oraz centralnym układzie nerwowym (Braunwald et al., 2001).

Dimetylortęć, (CH3)2Hg, to forma rtęci organicznej spotykana tylko w laboratoriach. Trzeba zauważyć, że jest to bardzo toksyczny związek, który jest w dużej mierze absorbowany przez skórę (nawet rękawiczki lateksowe nie stanowią zabezpieczenia) i łatwo zmienia się w formę oparów. Ekspozycja na ilość odpowiadającą kilku kroplom jest śmiertelna, gdyż prowadzi do degeneracji układu nerwowego (Braunwald et al., 2001, Nierenberg et al., 1998). W roku 1997 dimetylortęć spowodowała śmierć profesora chemii i aktualnie odradza się stosowanie tego związku w laboratoriach, jeżeli możliwe są inne środki (Nierenberg et al., 1998).

3. Eliminacja i biologiczny okres półrozpadu rtęci.

Eliminacja rtęci z ludzkiego ciała zmienia się zależnie od form rtęci, a okres półrozpadu jest zmienny w zależności od organu. Eliminacja rtęci metalicznej ma miejsce przez mocz, kał i wydychane powietrze. Podstawową drogą eliminacji rtęci organicznej jest układ trawienny. Rtęć etylowana jest wydzielana do żółci, ale większość z niej przechodzi cykl enterohepatyczny (Clarkson, 2002).

3.1. Toksykologia i eliminacja rtęci z mózgu

Kwestia toksykologii i eliminacji rtęci z mózgu budzi wiele kontrowersji. Chociaż rtęć nieorganiczna nie ma właściwości pozwalającej na przekraczanie bariery krew-mózg przez dużą ilość tego związku – jej obecność stwierdza się z mózgu zarówno przy zatruciu rtęcią etylowaną, jak i etylowaną (Magos et al., 1985) oraz w przypadkach ekspozycji na opary rtęci związanej z wykonywaniem pracy zawodowej (Nylander et al., 1989; Opitz et al., 1996).

Więcej kontrowersji budzi jednakże kwestia, czy to sama rtęć etylowana, czy raczej rtęć nieorganiczna powstała w wyniku demetylacji rtęci metylowanej mózgu, stanowi bezpośredni czynnik neurotoksyczny w przypadkach zatrucia rtęcią etylowaną. Badania dostarczyły wielu dowodów na korzyść tezy o bezpośredniej toksyczności rtęci metylowanej (Magos et al., 1985). W toku badań poddano szczury działaniu zarówno chlorku rtęci etylowanej (o stężeniu 8.0 i 9.6 mgHg/kg) i chlorku rtęci metylowanej (w stężeniu 8.0 mgHg/kg) drogą gastroskopii. Z drugiej strony, niektóre badania potwierdziły też tezę o bezpośredniej toksyczności rtęci nieorganicznej. Małpom z gatunku Macaca Fascicularis doustnie podano rtęć metylowanej (w stężeniu 50ugHg/kg) (Charleston et al., 1996, 1995; Vahter et al. 1994,1995). Tezę też udowodniono bez żadnych wątpliwości w drodze autopsji osób przewlekle zatrutych rtęcią (Davis et al., 1994; Takeuchi et al., 1989).

Na pierwszy rzut oka badania wydają się prowadzić do sprzecznych wniosków. Ta ewidentna sprzeczność może być wyjaśniona przy użyciu starożytnej maksymy: „Dawka czyni truciznę”. W rezultacie, bezpośrednim toksycznym związkiem w każdym z wyżej opisanych przypadków jest ta forma rtęci, która jako pierwsza odłoży się na poziomie neurotoksycznym. W perspektywie krótkoterminowej, w przypadku podania rtęci metylowanej w dużych dawkach, tak jak w badaniach Magos et al. (1985), bezpośrednim związkiem toksycznym będzie najprawdopodobniej rtęć metylowana, z uwagi na wysokość podanej dawki, która prowadzi do bezpośredniego efektu toksyczności zanim w ogóle może dojść do szerszej demetylacji. Jednakże przy przewlekłej ekspozycji na małe dawki rtęci, jak w badaniach Charleston et al. (1996,1995) i Vahter et al. (1994,1995) bezpośrednim związkiem toksycznym będzie z dużym prawdopodobieństwem rtęć nieorganiczna, z jednej strony z uwagi na długoterminowy proces odkładania się jej w mózgu i wyjątkowo wysoki okres półrozpady i z drugiej strony z uwagi na fakt, iż rtęć metylowana osiąga stabilny stan po roku od ekspozycji i nie kumuluje się dłużej w mózgu, podczas gdy poziomy rtęci nieorganicznej rosły przez cały okres trwania eksperymentu (18 miesięcy).

Trzeba również uwzględnić fakt, iż gdy rtęć nieorganiczna dotrze już do mózgu, jej okres półrozpadu w tym organie jest znacząco dłuższy niż rtęci etylowanej czy metylowanej (Charleston et al., 1996, 1995; Vahter ety al. 1994, 1995). W rezultacie rtęć nieorganiczna ma tendencję do kumulowania się w mózgu przy zatruciu rtęcią metylowaną już po tym, gdy poziom rtęci metylowanej osiągnął stabilny stan (Vahter et al., 1994). Rzeczywiście, wiele badań autopsyjnych przypadków zatrucia oparami rtęci i rtęcią metylowaną doprowadziło do ujawnienia rtęci nieorganicznej w mózgu wiele lat po ustaniu ekspozycji (Davis et al., 1994; Hargreaves et al., 1988; Nylander et al., 1989; Opitz et al., 1996; Takeuchi et al., 1989).

Debata akademicka dotycząca tych zagadnień będzie prawdopodobnie kontynuowana. Niezależnie od tego, uwzględniając istniejące dowody na selektywną retencję rtęci nieorganicznej w mózgu zarówno po doustnej ekspozycji na rtęć metylowaną jak i ekspozycji na opary rtęci oraz uwzględniając fakt, że są to dwie najczęstsze drogi ekspozycji na rtęć w populacji ludzkiej (poprzez konsumpcję ryb i opary rtęci uwalniane z plomb amalgamatowych), jest oczywistym że kumulacja rtęci nieorganicznej w mózgu powstająca z przewlekłej ekspozycji na niskie dawki przez długi okres czasu, niezależnie od pierwotnych form rtęci, na której działanie narażona jest osoba, musi być traktowana jako potencjalne źródło neurotoksyczności u ludzi.

4. Mechanizmy transportu rtęci w ludzkim ciele.

Przynajmniej od wczesnych lat siedemdziesiątych wiadomym jest, że 99% rtęci krążącej w osoczu przyłącza się do grup tiulowych opartych na proteinach i spekulowano, że transport rtęci do poszczególnych organów i jej redystrybucja dotyczy pozostałego 1% rtęci przyłączonej do „zdolnych do dyfuzji tioli” (Clarkson, 1972), czyli np. tioli o niskiej masie cząsteczkowej, które przenikają przez membrany komórek (Lorscheider et al., 1995). W maju 2005 Bridges i Zalups (2005) opublikowali pracę analizującą różne przykłady endogenicznych tioli, które wspomagają transport metali ciężkich. Ich praca skupia się na zjawisku „molekularnego naśladownictwa” i przytacza wiele przykładów, kiedy tiole o niskiej masie cząsteczkowej połączyły się z rtęcią (i innymi ciężkimi metalami) umożliwiły wejście przez rtęć do różnych rodzajów komórek dzięki molekularnemu naśladownictwu. „Molekularne naśladownictwo odnosi się do zjawiska, w którym połączenie się jonów metali do grup nukleofilowych niektórych biomolekuł prowadzi do uformowania kompleksów organiczno-metalicznych, które zachowują się jak strukturalne i/lub funkcjonalne homologi innych endogenicznych biomolekuł albo tych molekuł, do których przyłączyły się jony metali.” (Bridges i Zalups, 2005).

Wydaje się prawdopodobnym, iż rola naśladownictwa molekularnego w transporcie metali ciężkich podsumowana przez Bridgesa i Zalupsa (2005), stanowi istotny dowód kliniczny działania mechanizmów, dzięki którym toksyczne metale ciężkie transportowane są do różnych rodzajów komórek w całym ciele. Warto również dodać, że pozostało jeszcze do odkrycia wiele mechanizmów naśladownictwa molekularnego. W rzeczy samej, Zalups i Ahmad (2005a, b) opublikowali dalsze wyniki badań, które dowodzą, iż N-acetyl-cysteina (NAC) w połączeniu z rtęcią etylowaną i metylowaną oraz homocysteina w połączeniu z rtęcią metylowaną mogą działać jako substraty ludzkich transporterów anionów organicznych-1 (hOAT).

5. Chelatacja

Związki chelatacyjne są stosowane w farmakologicznym leczeniu zatrucia metalami ciężkimi. Chelatory to molekuły, które ściśle wiążą się z metalami obudowując je strukturą pierścienia. Dobry chelator jest toksyczny w niskim stopniu, wiąże się w pierwszej kolejności z metalami ciężkimi o stabilnych stałych stężeniowych i ma wyższy współczynnik wydalania niż endogeniczne związki wiążące metale, w ten sposób faworyzując szybką eliminację metali toksycznych. DMPS i DMSA to związki chelatacyjne oparte na ditiolach, stosowane w leczeniu zatrucia rtęcią. DMPS nie jest aktualnie zatwierdzony przez FDA do użytku klinicznego, chociaż jest stosowany w leczeniu zatrucia rtęcią bez aprobaty FDA (Risher i Amler, 2005). DMSA otrzymał zgodę na stosowanie u dzieci zatrutych ołowiem (Risher i Amler, 2005).

5.1. DMPS (Dimaval, Unithiol) – dimerkaptopropanosulfon

DMPS został zarejestrowany jako lek w Związku Radzieckim w roku 1958, ale stał się dostępny na Zachodzie dopiero w 1978 roku (Aposhian et al., 1995). DMPS jest ditiolem rozpuszczalnym w wodzie. Używa się go w odtruwaniu z arszeniku, ołowiu, rtęci i kadmu, ma również zastosowanie w leczeniu choroby Wilsona (wrodzona wada metabolizmu miedzy, prowadząca do biokumulacji miedzi). DMPS można podać doustnie lub dożylnie. Jest przetwarzany w ludzkim organizmie w acykliczne i cykliczne dwusiarczki (Aposhian et al., 1995). Poprzednio przypuszczano, że DMPS wiąże się z rtęcią w stosunku 1:1, jednak badania przy zastosowaniu spektrometrii rentgenowskiej udowodniły, że taka struktura nie jest możliwa (George et al., 2004). Autorzy ustalili, że konieczne jest zbudowanie bardziej kompleksowej struktury z wykorzystaniem przynajmniej dwóch molekuł DMPS i dwóch atomów rtęci. DMPS nie jest skuteczne w usuwaniu rtęci z mózgu (Aposhian et al., 2003; Bucht and Lauwerys, 1989; George et al., 2004). DMPS chelatuje również minerały – miedź, chrom i cynk (Risher i Amler, 2005).

5.2. DMSA (Succimer, Chemet, Captomer) – kwas 2,3-dimerkatobursztynowy

DMSA, podawane doustnie, jest gwałtownie jednak nie w całości przyswajane. Znajduje zastosowanie w chelatacji ołowiu, arszeniku, kadmu, rtęci i innych metali. Jest gwałtownie i w dużym zakresie metabolizowane i wydalane głównie z moczem, a w małej ilości z żółcią i przez płuca. Ponad 95% DMSA w krwi wiąże się z białkami (głównie z albuminą) i ponad 90% DMSA wydalanego z moczem przybiera formę dwusiarczku z L-cysteiną (Aposhian et al. 1995). Podobnie jak w przypadku DMPS, w przeszłości prezentowano pogląd, że DMSA wiąże się z rtęcią w stosunku 1:1. Jednakże George etal. (2004) również i w tym przypadku odkryli, że taka struktura nie jest możliwa. Stwierdzili, że DMSA formuje zwykle binuklearny kompleks Hg2(DMSA)2 in vitro. DMSA nie jest skuteczne w chelatacji rtęci z mózgu (Aposhian et al., 2003, Bucht i Lauwerysm 1989, George et al., 2004). Efekty uboczne stosowania DMSA obejmują zaburzenia trawienia, wysypkę na skórze i symptomy podobne do grypy. U niektórych pacjentów stwierdzono łagodną, a nawet umiarkowaną neutropenię i podczas terapii zaleca się regularne badania morfologii krwi. Przed terapią należy zbadać funkcje wątroby i nerek (Sweetman, 2002). DMSA jest uważany za najmniej toksyczny z chelatujących merkaptanów (Aposhian et al. 1995). DMSA ma okres półrozpadu równy 3,2 godziny (Aposhian et al., 1992b, Frumkin et al., 2001) i chelatuje również takie minerały jak miedź i cynk (Risher i Amler, 2005).

6. Kwas alfa-liponowy – jego rola w leczeniu zatrucia rtęcią?

6.1. ALA – kwas alfa-liponowy

Kwas alfa-liponowy (ALA) to dwusiarczek, który jest znany jako bardzo silny antyoksydant i stosowany jest szeroko jako suplement diety. Wewnątrzkomórkowo redukowany jest do kwasu dihydroliponowego (DHLA), ditiolu, który ma właściwości antyoksydacyjne. DHLA może być swobodnie transportowane z komórek do przestrzeni międzykomórkowej. Zarówno ALA, jak i DHLA tworzą chelaty z różnymi metalami ciężkimi (Packer et al., 1997, 1995). Podanie ALA zwiększa wewnątrzkomórkowe poziomy GSH o 30-70% (Packer et al., 1997) i ma zdolności regenerujące inne antyoksydanty, takie jak witaminy C i E. W przeciwieństwie do DMSA i DMPS, ALA dociera do wszystkich obszarów centralnego układu nerwowego i nerwów obwodowych (Packer et al., 1997).

Udowodniono, że ALA pełni rolę ochronną przeciwko efektom zatrucia rtęcią u licznych gatunków ssaków, jeśli kwas ten podany zostanie jednocześnie albo tuż po ekspozycji na rtęć (Donatelli, 2955, Grunert, 1960), zakładając że użyto właściwej dawki ALA (niewłaściwie odmierzone dawki zwiększają poziom zatrucia). Grunert (1960) zasugerował, że częstsze podawanie niższych dawek ALA może być również skuteczne w utrzymywaniu stałego poziomu ALA we krwi i efekt ten zaobserwowano u świnek morskich (którym podawano ALA co 4 godziny) ( Donatelli, 1955).

Aposhian et al. (2003) odkryli, że ALA podane samo albo z DMSA nie chelatuje rtęci w nerkach czy mózgu u szczurów poddanych działaniu wielokrotnych dawek oparów rtęci. Jednakże Gregus et al. (1992) wykazał, że podanie ALA szczurom prowadzi do zwiększonego wydalania rtęci nieorganicznej z żółcią (12-37-krotnie). Ten sam efekt nie dotyczy rtęci metylowanej. Gregus et al. (1992) zasugerował, że rtęć nieorganiczna może być wydalana w formie kompleksów DHLA-Hg2+.

Niezbędne są dalsze badania poświęcone ALA jako chelatorowi – w szczególności analiza chelatacji częstymi i niskimi dawkami, zasugerowanej przez Cutlera (1999). Chociaż nie recenzowaną naukowo publikacją, Cutler przekonująco uargumentował istotność częstotliwości podawania chelatora, co wzbudziło zainteresowanie społeczności naukowej. Podczas gdy wydawałoby się, że ALA ma duży potencjał jako chelator rtęci, jasno wynika również z prac Donatelli (1955) i Grunera (1960) że efekt działania ALA przy zatruciu rtęcią zależy od wielkości dawki i odstępu między dawkami w czasie.

7. Interakcje z ligandami i substancje odżywcze mające wpływ na zatrucie rtęcią.

Niewiele istnieje danych na temat wpływu, jakie mogą mieć na zatrucie rtęcią substancje odżywcze – zarówno w aspekcie ochrony przez rtęcią, jak i potęgowania jej działania przez interakcje z ligandami. Uwzględniając to, jaką rolę endogeniczne tiole, takie jak cysteina, odgrywają w transporcie rtęci po ludzkim organizmie, co podsumowali Bridges i Zalups (2005), wydawałoby się, że zróżnicowane poziomy tioli w osoczu prowadzą do zróżnicowanych poziomów retencji rtęci w organach. Rzeczywiście, w jednym z badań suplementacja NAC wyraźnie zwiększyła koncentrację rtęci w mózgu (Aposhian et al. 2003). Rodzi to wątpliwość, czy przyjmowanie z pożywieniem albo suplementami substancji zawierających tiole ma wpływ na transport rtęci do organów, a tym samym na poziom zatrucia. Najnowsze odkrycia dowodzą, że u szczurów ilość tioli to ważny czynnik w dystrybucji i eliminacji rtęci nieorganicznej (Zalups i Lash, 2006). Sugeruje się również, że u ludzi kontrolowanie poziomów cysteiny w osoczu jest istotne dla kontroli objawów i leczeniu zatrucia rtęcią (Cutler, 1999).

7.1. N-Acetyl-cysteina (NAC)/glutation (GSH)

NAC i GSH zasługują na szersze omówienie, gdyż niektórzy lekarze zalecają je jako leki na zatrucie rtęcią. Na pierwszy rzut oka wydawałoby się to logiczną decyzją, gdyż GSH jest związkiem, który ma wpływ na wydalanie rtęci metylowanej z żółcią (Ballatori i Clarkson, 1985), jak również uważa się, że wewnątrzkomórkowe GSH odgrywa rolę w ochronie komórek (Clarkson, 2002). Jednakże, tylko 1% obciążenia rtęcią metylowaną jest eliminowane z przewodu pokarmowego poprzez demetylację spowodowaną przez mikroflorę jelit – pozostała część jest reabsorbowana i przechodzi cykl enterohepatyczny (Clarkson, 2002). Co więcej, odkryto u szczurów, że koniugat rtęci z GSH zostaje faktycznie odkładana w nerkach jako rtęć organiczna (Bridges i Zalups, 2005). Koniugaty rtęci z GSH są konwertowane do koniugatów rtęci z cysteiną przez enzym gamma-glutamyltransferazę oraz cysteinylglicynazę w proksymalnych kanalikach nerkowych, prowadząc do zwiększonego odkładania się rtęci w nerkach. Dowiedziono również, że odkładanie się rtęci metylowanej w nerkach zależy od poziomu GSH (Richardson i Murphy, 1975). Aposhian et al. (2003) wykazał na przykładzie szczurów, które wystawiono na ekspozycję rtęci metalicznej, że NAC w widoczny sposób zwiększył koncentrację rtęci w mózgu. Dodatkowo, niedawno opublikowane wyniki badań Zalupsa i Ahmada (2005b) dowodzą, że koniugaty NAC oraz rtęci metylowanej i nieorganicznej są potencjalnie zdolnym do transportu związkami odkładanymi in vivo w komórkach nabłonka proksymalnych kanalików . Co więcej, ostatni z wymienionych eksperymentów przeprowadzono używając tkanek z nerek psich (MDCK) jednak z udziałem ludzkich transporterów anionów organicznych-1 (hOAT).

Przyjmując nieskuteczność eliminacji rtęci metylowanej przez żółć, znany mechanizm enterohepatyczny dotyczący rtęci metylowanej oraz odkładanie się rtęci w nerkach i mózgu (Bridges i Zalups, 2005; Kerper et al., 1992) (dotyczy rodzajów rtęci wchodzących w kompleksy z tiolami o niskiej masie cząsteczkowej), NAC i GSH wydają się niewłaściwym wyborem terapii zatrucia rtęcią z powodu wysokiego ryzyka redystrybucji rtęci do tych organów.

7. 2. Cynk

Cynk zwiększa w nerkach zwierząt produkcję metalotioneiny, , białka wiążącego metale (Goyer et al., 1995). Metalotioneina jest białkiem o niewielkiej masie cząsteczkowej o dużej zawartości pozostałości cysteiny i metali. Rtęć formuje z metalotioneiną kompleksy, a metalotioneina jest znana jako związek chroniący układ nerwowy przed ekspozycją na opary rtęci (Yoshida et al., 2005). Rtęć nieorganiczna i metaliczna indukuje produkcję metalotioneiny w nerkach, chociaż rtęć metylowana nie czyni tego bezpośrednio ale w oparciu o metabolizowanie się do formy rtęcie nieorganicznej.

7.3. Selen

Selen to pierwiastek, który ma wpływ na dystrybucję rtęci i redukcję zatrucia rtęcią, co wykazano w eksperymentach na zwierzętach (Goyer et al., 1995). Co ciekawe, Hol et al. (2001) wykazał, że poziom selenu we krwi był znacznie niższy u osób, które miały objawy „choroby amalgamatowej” w porównaniu do zdrowych osób z plombami amalgamatowymi.

Istnieją dowody na to, że selen w osoczu tworzy kompleksy z rtęcią nieorganiczną, które następnie łączą się z selenoproteiną-P (Galer et al., 2000 ; Sasakura i Suzuki, 1998), która z kolei zapobiega odkładaniu się rtęci w nerkach (Yamamoto, 1985). Funkcja selenoproteiny-P nie jest dobrze zbadana, jednak warto zaznaczyć, że badacze tej kwestii rozważają trzy możliwe role tej substancji: (1) obrona antyoksydacyjna; (2) rola w transporcie selenu; (3) rola ochronna jako naturalny chelator metali ciężkich (Chen i Berry, 2003).

Zaobserwowano jednak u szczurów, że jednoczesne podawanie selenu (w formie selenitu sodu) oraz związku chelatacyjnego (DMSA lub DMPS) prowadzi do zmniejszonego wydzielania i znacznej redystrybucji rtęci – w szczególności zmniejszeniu rtęci w nerkach i zwiększeniu jej w wątrobie, choć wypada zaznaczyć, że inne organy nie były przedmiotem badań (Juresa et al., 2005). Jako, iż wykorzystywane chelatory (DMSA i DMPS) zwiększają wydalanie rtęci z moczem, a selenoproteina-P zapobiega odkładaniu się rtęci w nerkach, Juresa et al. (2005) zasugerowali, że konkurowanie ligand pomiędzy chelatorami i selenoproteiną-P prowadzi do redystrybucji rtęci i zmniejszonego wydzielania jej z moczem.

Kolejny czynnik komplikujący kwestię związku selenu i zatrucia rtęcią to zwiększanie produkcji GSH w wątrobie przy zmniejszonym poziomie selenu (Hill i Burk, 1985), prowadzący nawet do podwojenia poziomu GSH w osoczu. Jak wcześniej wskazano, GSH ma związek z odkładaniem się rtęci w nerkach, a więc efekt selenu na poziom GSH może mieć również znaczenie dla zatrucia rtęcią.

Warto zauważyć, że istotna jest forma przyjmowanego selenu. Selen w formie selenometioniny jest mniej więcej dwa razy tak biologicznie dostępny jak selenit sodu i dodatkowo zwiększa poziom selenoproteiny-P i poziom selenu w osoczu (Xia et al., 2005) (uwaga: całkowity poziom selenu obejmuje selen związany z proteiną i selenometioninę).

Jak widać, interakcje pomiędzy rtęcią, selenem, cynkiem i tiolami są dość złożone. Przypuszcza się, że przyjmowanie selenu, cynku i tioli odgrywa ważną rolę przy rozpatrywaniu efektów rtęci na organizm człowieka i poziomu wydalania rtęci. Kwestia ta wymaga dalszych badań.

7. 4. Błonnik spożywczy.

Brakuje informacji o wpływie błonnika spożywczego na zatrucie rtęcią. Jednakże, badania in vitro dowiodły, że otręby pszennie mogą skutecznie wiązać rtęć i inne metale ciężkie (Ou et al., 1999). U myszy poddanych ekspozycji na rtęć metylowaną, dieta w 30% składająca się z otrębów doprowadziła do zwiększenia tempa eliminacji rtęci z ciała i do redukcji poziomu rtęci w mózgu (Rowland et al., 1986). Dowiedziono też, że pektyny jabłkowe skróciły okres zatrucia u dzieci powodując zwiększone wydalanie rtęci z moczem (Sobolev et al., 1999).

Autor ten sugeruje potencjalny mechanizm działania, który prowadzi do zwiększenia wydalania rtęci przez błonnik spożywczy. Rtęć metylowana przechodzi intensywny cykl enterohepatyczny (Clarkson, 2002). Jako, iż dowiedziono in vitro że błonnik łączy ze sobą rtęć, a do tego błonnik nie jest przyswajalny, zasugerowano, że błonnik w diecie przerywa cykl enterohepatyczny, wiążąc rtęć i zwiększając tempo jej wydalania.

Co więcej, Gregus et al. (1992) zasugerował, że kwas alfa-liponowy prowadzi do zwiększonego wydalania rtęci nieorganicznej z żółcią w formie kompleksów DHLA-Hg2+. Jako, iż kompleksy te są podobne do organicznych rodzajów rtęci, warto rozważyć, że mogą zostać ponownie absorbowane przez jelita podobnie jak rtęć metylowana. Gdyby tak było, a błonnik byłby zdolny do związania tych kompleksów, zwiększona podaż błonnika mogłaby prowadzić do zmniejszonej reabsorpcji tych kompleksów, a co za tym idzie do zwiększonej skuteczności leczenia i zmniejszenia efektów ubocznych.

8. Diagnostyka zatrucia rtęcią w kontekście roli tioli, ditioli i wchodzących w interakcje ligand.

8.1. Poziomy w krwi i moczu

Przy niedawnej ekspozycji na rtęć, zbadanie poziomów rtęci w krwi i moczu może być użyteczne diagnostycznie i w celu obliczenia właściwej dawki (Clarkson 2002; Risher i Dewoskin, 1999; Risher i Amler, 2005). Jednakże przy ekspozycji przeszłej, przewlekłej albo na niskie dawki rtęci (Rosher i Dewoskin, 1999), poziomy rtęci w krwi i moczu nie odzwierciedlają stopnia zatrucia. Dodatkowo czas odkładania się rtęci w niektórych organach, w szczególności w mózgu (Braunwald et al., 2001, Hargreaves et al., 1988, Opitz et al., 1996, Takeuchi et al. 1989, Vahter et al., 1994) jest o wiele dłuższy niż we krwi. Warto odnotować, że u robotników, narażonych na ekspozycję na duże ilości rtęci (Opitz et al., 1996) po przejściu leczenia, stwierdzono stałe poziomy rtęci w krwi i moczu przez kolejne 3 lata aż do całkowitego uwolnienia organizmu z rtęci. Jednakże po śmierci pacjenta, 17 lat później, stwierdzono w jego mózgu znaczne ilości rtęci . Najwidoczniej w tym przypadku, poziom rtęci w krwi i moczu nie był miarodajnym wskaźnikiem obciążenia organizmu rtęcią (Uwaga: przy pomiarach rtęci w moczu, należy jednocześnie zmierzyć poziom kreatyniny w celu skontrolowania poziomu nawodnienia).

Po pierwsze, co zostało wcześniej omówione, jest możliwe, że poziom tioli, selenu i prawdopodobnie cynku mogą mieć efekt (bezpośredni albo pośredni) na dystrybucję rtęci. Niewiele wiadomo o interakcjach tych związków z chelatorami jak DMSA czy DMPS, chociaż wiadomo, że jednoczesne podanie selenu z DMSA lub DMPS prowadzi do zmniejszonej efektywności chelatorów (Juresa et al., 2005). Aktualne testy prowokacyjne nie uwzględniają w żaden sposób tych istotnych zmiennych.

W swojej pracy o testach prowokacyjnych DMPS Aposhian et al. (1992a) stwierdził „…bardzo znaczącą pozytywną korelację pomiędzy rtęcią wydalaną w moczu dwie godziny po podaniu DMPS

9. Testy prowokacyjne w chelatacji

W testach prowokacyjnych, mierzy się podstawowy poziom metalu w moczu (zwykle jednego z metali, np. rtęci, ołowiu) przed podaniem związku chelatacyjnego, a po pewnym okresie czasu pobiera się drugą próbkę moczu i ponownie mierzy poziom metalu. Poziomy metalu przed i po obciążeniu są następnie porównywane ze sobą jak i istniejącymi normami.

Do wykonywania tego typu testów wykorzystywano zarówno DMPS, jak i DMSA ze zróżnicowanymi rezultatami (Aposhian et al., 1992a; Frumkin et al., 2001; Roels et al. 1991). Podczas gdy niektórzy z autorów skupili się na klinicznym wykorzystaniu testów prowokacyjnych i interpretacji wyników, tłumacząc brak jednoznaczności tych wyników (Risher i Amler, 2005), oczywistym jest że są mechanizmy i założenia dotyczące metodologii samych testów, które należy rozważyć.

Po pierwsze, jak już wcześniej wspomniano, jest wysoce prawdopodobnym, że poziom tioli, selenu i cynku mają wpływ (bezpośredni lub pośredni) na dystrybucję rtęci. Niewiele wiadomo o interakcjach tych związków z chelatorami takimi jak DMPS czy DMSA, chociaż zaobserwowano, że jednoczesne podawania selenu z DMPS lub DMSA prowadzi do zmniejszenia skuteczności chelatorów (Jursa et al., 2005). Aktualnie testy prowokacyjne nie uwzględniają tych współistniejących zmiennych.

W swojej pracy o testach prowokacyjnych DMPS Aposhian et al. (1992a) odkrył „bardzo znaczącą pozytywną korelację pomiędzy rtęcią wydalaną w moczu dwie godziny po podaniu DMPS a ilością plomb amalgamatowych”. Warto zauważyć, że podczas przeprowadzania tego eksperymentu w ścisły sposób kontrolowano dietę uczestników, chociaż zostało to wyraźnie stwierdzone dopiero w późniejszej publikacji (Aposhian et al., 1995). Z klinicznego punktu widzenia testy prowokacyjne są często stosowane przez pacjentów bez wiedzy lekarza (Risher i Amler, 2005), co sugeruje, że wystandaryzowana kontrola dietetyczna nie jest stosowana. Wydaje się uzasadnionym, że ścisła kontrola dietetyczna zastosowana przez Aposhiana et al. (1992a, 1995) mogła w jakimś stopniu zminimalizować (albo wystandaryzować) poziomy kompetycyjnych ligand w osoczu uczestników eksperymentu, a w konsekwencji do bardziej przejrzystych jego wyników.

Po drugie, duże dożylne dawki, zwykle stosowane w testach prowokacyjnych, niosą ze sobą ryzyko redystrybucji rtęci. Jak wcześniej zaobserwowano, chelatory konkurują z innymi ligandami, m.in. enogenicznymi wolnymi tiolami, tiolami łączącymi fragmenty białek oraz metaloproteinami takimi jak selenoproteina-P i metalotioneina. Zaobserwowano taką redystrybucję u szczurów, co wiązało się z kompetycją pomiędzy selenoproteiną-P po podaniu zarówno DMPS jak i DMSA (Juresa et al., 2005). Używając większej dożylnej dawki, większe ilości rtęci są mobilizowane i w ten sposób zwiększa się w przypadku redystrybucji ilość rtęci redystrybuowanej do innych organów. Najgorszym scenariuszem wydaje się redystrybucja rtęci do mózgu, z jednej strony z uwagi na fakt, iż tam ma ona najdłuższy okres półrozpadu (Braunwald et al., 2001, Hargreaves et al., 1988, Opitz et al., 1996, Takeuchi et al., 1989; Vahter et al., 1994), a z drugiej strony z uwagi na niemożność usunięcia jej z mózgu przez DMSA czy DMPS (Aposhian et al., 2003, Bucht i Lauwerys, 1989; George et al., 2004). Co więcej, należy rozważyć, że mogą mieć miejsce uboczne skutki podawania leków i przy tak dużych ich dawkach mogą wystąpić gorsze reakcje na leki.

Po trzecie, testy prowokacyjne są zwykle przeprowadzane u pacjentów z plombami amalgamatowymi. Budzi to wątpliwość, czy związki chelatujące mogą chelatować rtęć z plomb amalgamatowych prowadząc do niedokładnych rezultatów i – co poważniejsze – do zwiększenia obciążenia rtęcią organizmu pacjenta. Autor niniejszej publikacji nie znalazł jakichkolwiek wyników badań dotyczących tej możliwości.

Po czwarte, jako że DMPS i DMSA nie chelatują rtęci z mózgu (Aposhian et al., 2003; Bucht i Lauwrys, 1989; George et al., 2004) testy prowokacyjne oparte na tych związkach nie oddają w sposób dokładny poziomu rtęci w mózgu. Jako, iż mózg jest jednym z głównych organów, w których osadza się na wiele lat rtęć metaliczna i organiczna (Braunwald et al., 2001; Hargreaves et al., 1988; Opitz et al., 1996; Takeuchi et al., 1989; Vahter et al., 1994), jest to istotna wada testów prowokacyjnych.

Po piąte, nie ma określonych norm maksymalnej i minimalnej ekspozycji na rtęć ani żadnego dozwolonego „bezpiecznego” poziomu ekspozycji na rtęć (Berlin, 2003; Risher i Amler, 2005). To oznacza, że wyniki testów prowokacyjnych nie mogą być porównane do żadnych norm i stało się to przyczyną krytyki testów prowokacyjnych (Risher i Amler, 2005). Jest w tym pewna przewrotna logika, gdyż aby ustalić normy dla populacji, należy najpierw opracować dokładny test. Co więcej, uwzględniając fakt, że rtęć jest bardzo toksyczny pierwiastkiem o nieustalonych funkcjach odżywczych, jest powszechna w środowisku (Clarkson et al., 2003), nie ma jasno określonej granicy bezpiecznej ekspozycji (Berlin 2003, Risher i Amler, 2005) i nie ma aktualnie powszechnie zaakceptowanej metody określania poziomu obciążenia organizmu rtęcią, poza autopsją, sam pomysł ustalenia ogólnych norm dotyczących ekspozycji na rtęć wydaje się, w chwili pisania tych słów, całkowicie niepoważnym postulatem.

10. Wnioski

Znaczenie rtęci w rozwoju wielu przewlekłych stanów chorobowych, takich jak stwardnienie zanikowe boczne (choroba Lou Gehringa), autyzm, choroba Alzheimera, stwardnienie rozsiane i choroba Parkinsona pozostaje kwestią kontrowersyjną. Jasnym jest, że wciąż istnieją znaczące luki w wiedzy na temat biologicznych mechanizmów działania różnych rodzajów rtęci na organizm. Wygląda jednak na to, iż osoby cierpiące na wyżej wymienione choroby same podejmują decyzje i poszukują dróg leczenia chelatacyjnego na własną rękę lub za radą swoich lekarzy (Berlin 2003; Risher i Amler, 2005). Jak widać, istnieje pilna potrzeba dalszych badań licznych kluczowych kwestii.

DMPS i DMSA to leki wybierane przy zatruciu rtęcią. Są dowody na to, że nie są one maksymalnie efektywnymi chelatorami (George et al., 2004) i są nieskuteczne w chelatowaniu rtęci z mózgu (Aposhian et al., 2003; Bucht i Lauwerys, 1989; George et al., 2004). Pomimo, iż są mniej toksyczne niż związki chelatujące rajue haj British Anti-Lewisite (BAL) i D-Penicillamine, mają również pewne toksyczne efekty uboczne (w szczególności DMPS). Istnieje potrzeba opracowania bardziej skutecznych i bezpiecznych związków chelatacyjnych, które będą w stanie usunąć rtęć z mózgu.

Aktualnie ALA jest jedynym chelatorem potencjalnie zdolnym do przeniknięcia do centralnego i obwodowego układu nerwowego. Chociaż przy zastosowaniu pewnego konkretnego harmonogramu dawkowania związek ten nie miał właściwości chelatacyjnych (Aposhian et al., 2003), poprzednie badania udowodniły, że działanie ALA zależne jest zarówno od wielkości jak i częstotliwości dawki (Donatelli 1955; Grunert 1960). Dalsze badanie tej kwestii jest niezbędne w celu ustalenia przydatności ALA jako chelatora klinicznego.

Wydaje się oczywistym w wyniku badań Bridgesa i Zalupsa (2005), że tiole endogeniczne, takie jak cysteina, homocysteina, GSH i NAC odgrywają ważną rolę w dystrybucji rtęci w organizmie. Jest to prawdopodobnie bardzo istotne z klinicznego punktu widzenia i należy przeprowadzić dalsze badania w celu ustalenia potencjalnych efektów podaży tioli w diecie i suplementacji na dystrybucję i toksyczność rtęci. Wielu lekarzy doradza stosowanie GSH albo NAC w terapii zatrucia rtęcią – nie wydaje się to działaniem rozsądnym w świetle dostępnych dowodów.

Cynk i selen również wydają się mieć wpływ na dystrybucję rtęci i ochronę przed jej toksycznością. Są to relacje bardzo dynamiczne i aktualnie słabo zrozumiane. Inne pierwiastki również mogą odgrywać ważną rolę, a interakcje cynku i seleny z chelatorami takimi jak DMPS/DMSA nie zostały wystarczająco dokładnie opisane.

Efekt przyjmowania błonnika spożywczego na dystrybucję i eliminację rtęci jest kolejnym dużym nieodkrytym polem badawczym. Kilka istniejących publikacji wskazuje jednakże na rolę błonnika spożywczego jako substancji potencjalnie wzmacniającej eliminację rtęci metylowanej z organizmu. Efekt błonnika spożywczego na eliminację DHLA-Hg2+ nie został dokładnie oznaczony.

Istnieje pilna potrzeba opracowania dokładnej metody diagnozowania zatrucia rtęcią w praktyce klinicznej w przypadku ekspozycji na rtęć – przeszłej, przewlekłej albo w niskich dawkach. Podczas gdy zaleca się w tym zakresie badanie poziomu rtęci w moczu i we krwi (Risher i Amler, 2005), są to testy użyteczne jedynie w przypadku niedawnej ekspozycji na rtęć i nie odzwierciedlają poziomu rtęci w mózgu. Aktualne testy prowokacyjne są niedokładne i z powodu stosowanych w nich dużych dawkach, niosą ze sobą ryzyko redystrybucji rtęci i efektów ubocznych na stosowane leki. Nie jest również zrozumiałe, jaki efekt będzie miało użycie związku chelatacyjnego u pacjenta z plombami amalgamatowymi.

Nie zostały również określone normy dla obciążenia organizmu rtęcią i bezpieczny poziom ekspozycji na rtęć. Przy braku dokładnych testów klinicznych pomysł określenia takich norm ma i tak niewielkie znaczenie. Co więcej, podczas gdy cała debata skupia się na bezpieczeństwie plomb amalgamatowych, stosowania tiomersalu i spożycia ryb zawierających rtęć oraz możliwej roli rtęci w niektórych chorobach przewlekłych, wydawałoby się logicznym opracowanie w pierwszej kolejności dokładnej metody określania poziomu rtęci w organizmie u zatrutych osób, gdyż bez tego nie będzie możliwe rozwikłanie innych kwestii.

Uwzględniając możliwość, że rtęć może mieć duże znaczenie w przebiegu licznych chorób, należy pilnie odpowiedzieć na wszystkie pytania dotyczące kwestii rtęci. Oczywistym jest, że tiole, ditiole, składniki odżywcze i interakcje z ligandami odgrywają ważną rolę w toksykologii rtęci. Lepsze zrozumienie roli tych cząsteczek może być kluczowe dla opracowania lepszych testów klinicznych zatrucia rtęcią i być może również dla opracowania bardziej skutecznych protokołów leczenia zatrucia rtęcią.

Oświadczenie dotyczące konfliktu interesów

Nie istnieje konflikt interesów.

Podziękowania

Dziękuję za wsparcie profesora Kevina Nolana z Royal College of Surgeons w Irlandii oraz całego Royal College of Surgeons w Irlandii

Bibliografia

  1. Aposhian, H.V., Bruce, D.C., Alter, W., Dart, R.C., Hurlbut, K.M., Aposhian, M.M., 1992a. Urinary mercury after administration of 2,3-dimercaptopropane-1-sulfonic acid: correlation with dental amalgam score. FASEB J. 6, 2472-2476.
  2.  Aposhian, H.V., Maiorino, R.M., Gonzalez-Ramirez, D., Zuniga-Charles, M., Xu, Z., Hurlbut, K.M., Junco-Munoz, P., Dart, R.C., Aposhian, M.M., 1995. Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology 97, 23-38.
  3.  Aposhian, H.V., Maiorino, R.M., Rivera, M., Bruce, D.C., Dart, R.C., Hurlbut, K.M., Levine, D.J., Zheng, W., Fernando, Q., Carter, D., et al., 1992b. Human studies with the chelating agents, DMPS and DMSA. J. Toxicol. Clin. Toxicol. 30, 505-528.
  4.  Aposhian, H.V., Morgan, D.L., Queen, H.L., Maiorino, R.M., Aposhian, M.M., 2003. Vitamin C, glutathione, or lipoic acid did not decrease brain or kidney mercury in rats exposed to mercury vapor. J. Toxicol. Clin. Toxicol. 41, 339-347.
  5.  Ballatori, N., Clarkson, T.W., 1985. Biliary secretion of glutathione and of glutathione-metal complexes. Fundam. Appl. Toxicol. 5, 816-831.
  6.  Berlin, M., 2003. Mercury in dental-fillings materials – an updated risk analysis in environmental medical terms. The Dental Material Commision – Care and Consideration.
  7.  Braunwald, E., Fauci, A.S., Kasper, D.L., Hauser, S.L., Longo, D.L., Jameson, J.L., 2001. Harrison’s Principles of Internal Medicine.McGraw-Hill, pp. 467-469, 2592-2593, 2602.
  8.  Bridges, C.C., Zalups, R.K., 2005. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 204,274-308.
  9.  Buchet, J.P., Lauwerys, R.R., 1989. Influence of 2,3-dimercaptopropane-1-sulfonate and dimercaptosuccinic acid on the mobilization of mercury from tissues of rats pretreated with mercuric chloride, phenylmercury acetate or mercury vapors. Toxicology 54, 323-333.
  10.  Champe, P.C., Harvey, R.A., Ferrier, D.R., 2005. Lippincott’s Illus-trated Reviews: Biochemistry, 146. Lippincott Williams & Wilkins, pp. 108-110, 146, 264.
  11.  Charleston, J.S., Body, R.L., Bolender, R.P., Mottet, N.K., Vahter, M.E., Burbacher, T.M., 1996. Changes in the number of astrocytes and microglia in the thalamus of the monkey Macaca fascicularis following long-term subclinical methylmercury exposure. Neuro-toxicology 17, 127-138.
  12.  Charleston, J.S., Body, R.L., Mottet, N.K., Vahter, M.E., Burbacher, T.M., 1995. Autometallographic determination of inorganic mer-cury distribution in the cortex of the calcarine sulcus of the monkey Macaca fascicularis following long-term subclinical exposure to methylmercury and mercuric chloride. Toxicol. Appl. Pharmacol. 132, 325-333.
  13.  Chen, J., Berry, M.J., 2003. Selenium and selenoproteins in the brain and brain diseases. J. Neurochem. 86, 1-12.
  14.  Clarkson, T.W., 1972. The pharmacology of mercury compounds. Annu. Rev. Pharmacol. 12, 375-406.
  15.  Clarkson, T.W., 2002. The three modern faces of mercury. Environ. Health Perspect. 110 (Suppl. 1), 11-23
  16.  Clarkson, T.W., Magos, L., Myers, G.J., 2003. The toxicology of mercury—current exposures and clinical manifestations. N. Engl. J. Med. 349, 1731-1737.
  17.  Cutler, A., 1999. Amalgam Illness: Diagnosis and Treatment. Self-Published, pp. 195-196, 199-208.
  18.  Davis, L.E., Kornfeld, M., Mooney, H.S., Fiedler, K.J., Haaland, K.Y.,Orrison, W.W., Cernichiari, E., Clarkson, T.W., 1994. Methylmercury poisoning: long-term clinical, radiological, toxicological, and pathological studies of an affected family. Ann. Neurol. 35,680-688.
  19.  Donatelli, L., 1955. Internal Symposium on Thioctic Acid, Naples.
  20.  Frumkin, H., Manning, C.C., Williams, P.L., Sanders, A., Taylor, B.B., Pierce, M., Elon, L., Hertzberg, V.S., 2001. Diagnostic chelation challenge with DMSA: a biomarker of long-term mercury expo-sure? Environ. Health Perspect. 109, 167-171.
  21.  Gailer, J., George, G.N., Pickering, I.J., Madden, S., Prince, R.C., Yu,E.Y., Denton, M.B., Younis, H.S., Aposhian, H.V., 2000. Structural basis of the antagonism between inorganic mercury and selenium in mammals. Chem. Res. Toxicol. 13, 1135-1142.
  22.  Geier, D.A., Geier, M.R., 2006. Early downward trends in neurode-velopmental disorders following removal ofthimerosal-containing vaccines. J. Am. Physicians Surgeons 11, 8-13.
  23.  George, G.N., Prince, R.C., Gailer, J., Buttigieg, G.A., Denton, M.B.,Harris, H.H., Pickering, I.J., 2004. Mercury binding tothe chelation therapy agents DMSA and DMPS and the rational design ofcustom chelators for mercury. Chem. Res. Toxicol. 17, 999-1006.
  24.  Goyer, R., Klaassen, C.D., Waalkes, M.P., 1995. Metal Toxicology. Academic Press, pp. 35-37.
  25.  Gregus, Z., Stein, A.F., Varga, F., Klaassen, C.D., 1992. Effect of lipoic acid on biliary excretion of glutathione and metals. Toxicol. Appl.Pharmacol. 114, 88-96.
  26.  Grunert, R.R., 1960. The effect of DL-alpha-lipoic acid on heavy-metal intoxication in mice and dogs. Arch. Biochem. Biophys. 86,190-194.
  27.  Hargreaves, R.J., Evans, J.G., Janota, I., Magos, L., Cavanagh, J.B., 1988. Persistent mercury in nerve cells 16 years after metal-lic mercury poisoning. Neuropathol. Appl. Neurobiol. 14, 443­452.
  28.  Hill, K.E., Burk, R.F., 1985. Effect of selenium deficiency on the disposition of plasma glutathione. Arch. Biochem. Biophys. 240,166-171.
  29.  Hol, P.J., Vamnes, J.S., Gjerdet, N.R., Eide, R., Isrenn, R., 2001. Dental amalgam and selenium in blood. Environ. Res. 87, 141-146.
  30.  Juresa, D., Blanusa, M., Kostial, K., 2005. Simultaneous administra-tion of sodium selenite and mercuric chloride decreases efficacy of DMSA and DMPS in mercury elimination in rats. Toxicol. Lett. 155, 97-102.
  31.  Kerper, L.E., Ballatori, N., Clarkson, T.W., 1992. Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am. J. Physiol. 262, R761-R765.
  32.  Lorscheider, F.L., Vimy, M.J., Summers, A.O., 1995. Mercury expo-sure from “silver” tooth fillings: emerging evidence questions a traditional dental paradigm. FASEB J. 9, 504-508.
  33.  Magos, L., Brown, A.W., Sparrow, S., Bailey, E., Snowden, R.T., Skipp, W.R., 1985. The comparative toxicology of ethyl- and methylmer-cury. Arch. Toxicol. 57, 260-267.
  34.  Mutter, J., Naumann, J., Sadaghiani, C., Walach, H., Drasch, G., 2004.Amalgam studies: disregarding basic principles of mercury toxicity. Int. J. Hyg. Environ. Health 207, 391-397.
  35.  Nierenberg, D.W., Nordgren, R.E., Chang, M.B., Siegler, R.W., Blayney, M.B., Hochberg, F., Toribara, T.Y., Cernichiari, E., Clark-son, T., 1998. Delayed cerebellar disease and death after accidental exposure to dimethylmercury. N. Engl. J. Med. 338, 1672-1676.
  36.  Nylander, M., Friberg, L., Eggleston, D., Bjorkman, L., 1989. Mercury accumulation in tissues from dental staff and controls in relation to exposure. Swed. Dent. J. 13, 235-243.
  37.  Opitz, H., Schweinsberg, F., Grossmann, T., Wendt-Gallitelli, M.F., Meyermann, R., 1996. Demonstration of mercury in the human brain and other organs 17 years after metallic mercury exposure. Clin. Neuropathol. 15, 139-144.
  38.  Ou, S., Gao, K., Li, Y., 1999. An in vitro study of wheat bran binding capacity for Hg, Cd, and Pb. J. Agric. Food Chem. 47, 4714-4717.
  39.  Ozuah, P.O., 2000. Mercury poisoning. Curr. Probl. Pediatr. 30,91-99.
  40.  Parker, S.K., Schwartz, B., Todd, J., Pickering, L.K., 2004. Thimerosal-containing vaccines and autistic spectrum disorder: a critical review of published original data. Pediatrics 114, 793-804.
  41.  Packer, L., Tritschler, H.J., Wessel, K., 1997. Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic. Biol. Med. 22, 359-378.
  42.  Packer, L., Witt, E.H., Tritschler, H.J., 1995. Alpha-lipoic acid as a biological antioxidant. Free Radic. Biol. Med. 19, 227-250.
  43.  Richardson, R.J., Murphy, S.D., 1975. Effect of glutathione deple-tion on tissue deposition of methylmercury in rats. Toxicol. Appl. Pharmacol. 31, 505-519.
  44.  Risher, J.F., Amler, S.N., 2005. Mercury exposure: evaluation and intervention the inappropriate use ofchelating agents in the diagno-sis and treatment of putative mercury poisoning. Neurotoxicology 26, 691-699.
  45.  Risher, J., Dewoskin, R., 1999. Toxicological profile for Mercury. In: Services, U.D. O. H. A. H. (Ed.), Agency for Toxic Substances and Disease Registry.
  46.  Roels, H.A., Boeckx, M., Ceulemans, E., Lauwerys, R.R., 1991. Urinary excretion of mercury after occupational exposure to mercury vapour and influence of the chelating agent meso-2,3-dimercaptosuccinic acid (DMSA). Br. J. Ind. Med. 48, 247-253.
  47.  Rowland, I.R., Mallett, A.K., Flynn, J., Hargreaves, R.J., 1986. The effect of various dietary fibres on tissue concentration and chemi­cal form of mercury after methylmercury exposure in mice. Arch.Toxicol. 59, 94-98.
  48.  Sasakura, C., Suzuki, K.T., 1998. Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P. J. Inorg. Biochem. 71, 159-162.
  49.  Sobolev, M.B., Khatskel, S.B., Muradov, A., 1999. Enterosorption by nonstarch polysaccharides as a method of treatment of children with mercury poisoning. Vopr. Pitan. 68, 28-30. Sweetman, S., 2002. Martindale: The Complete Drug Reference. Pharmaceutical Press, pp. 1024-1026.
  50.  Takeuchi, T., Eto, K., Tokunaga, H., 1989. Mercury level and his-tochemical distribution in a human brain with Minamata disease following a long-term clinical course of twenty-six years. Neuro-toxicology 10, 651-657.
  51.  Tepel, M., Van der giet, M., Schwarzfeld, C., Laufer, U., Liermann, D., Zidek, W., 2000. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N. Engl. J. Med. 343 (3), 180-184.
  52.  Vahter, M., Mottet, N.K., Friberg, L., Lind, B., Shen, D.D., Burbacher, T., 1994. Speciation of mercury in the primate blood and brain following long-term exposure to methyl mercury. Toxicol. Appl. Pharmacol. 124, 221-229.
  53.  Vahter, M.E., Mottet, N.K., Friberg, L.T., Lind, S.B., Charleston, J.S., Burbacher, T.M., 1995. Demethylation of methyl mercury in dif-ferent brain sites of Macaca fascicularis monkeys during long-term subclinical methyl mercury exposure. Toxicol. Appl. Pharmacol. 134, 273-284.
  54.  Xia, Y., Hill, K.E., Byrne, D.W., Xu, J., Burk, R.F., 2005. Effectiveness of selenium supplements in a low-selenium area of China. Am. J. Clin. Nutr. 81, 829-834.
  55.  Yamamoto, I., 1985. Effect of various amounts of selenium on the metabolism of mercuric chloride in mice. Biochem. Pharmacol. 34, 2713-2720.
  56.  Yoshida, M., Watanabe, C., Horie, K., Satoh, M., Sawada, M., Shi-mada, A., 2005. Neurobehavioral changes in metallothionein-null mice prenatally exposed to mercury vapor. Toxicol. Lett. 155, 361-368.
  57.  Zalups, R.K., 2000. Molecular interactions with mercury in the kidney. Pharmacol. Rev. 52 (1), 113-143.
  58.  Zalups, R.K., Ahmad, S., 2005a. Handling of the homocysteine S-conjugate of methylmercury by renal epithelial cells: role of organic anion transporter 1 and amino acid transporters. J. Pharmacol. Exp. Ther. 315, 896-904.
  59.  Zalups, R.K., Ahmad, S., 2005b. Transport of W-acetylcysteine S-conjugates of methylmercury in Madin-Darby canine kidney cells stably transfected with human isoform of organic anion transporter 1. J. Pharmacol. Exp. Ther. 314, 1158-1168.
  60.  Zalups, R.K., Lash, L.H., 2006. Cystine alters the renal and hepatic disposition of inorganic mercury and plasma thiol status. Toxicol. Appl. Pharmacol. 214, 88-97.

5. Suplementacja

Lista suplementów stosowanych przy interwencjach medycznych u dzieci z autyzmem

 5-HTP (5 Hydroksytryptofan) to aminokwas, który jest prekursorem w produkcji serotoniny – zwykle obniżonej u dzieci a autyzmem. Pomaga przy zaburzeniach snu i zmianach nastroju. Dr William Shaw zaleca podawanie go wraz z witaminą B3 w formie niacinamide. Sugerowana dawka – 50 mg dziennie w kilku dawkach.

Adrenal Cortex  pomaga przy obniżonej funkcji nadnerczy. Nadnercza można wspierać dodatkowo poprzez podawanie lukrecji, żeńszenia, ziół adaptogennych, chromu, witaminy B5, witaminy C i E, magnezu.

Węgiel aktywowany, Enterosgel – pomocne podczas die-off przy eliminacji grzybów

Kwas alfa-liponowy – to środek chelatujący metale ciężkie i silny antyoksydant. Upewnij się, że nie zawiera go żadna z multiwitamin, które podajesz dziecku. Można go podawać wyłącznie według specjalnego protokołu w ramach chelatacji.

DMSA to środek chelatujący metale ciężkie Można go podawać wyłącznie według specjalnego protokołu w ramach chelatacji.

Biotyna (witamina B7) nie powoduje w nadmiarze efektu toksycznego. Jest wykorzystywana przy leczeniu grzybicy, gdyż powstrzymuje drożdżaki przed transformacją w grzyby. Jej źródłem są korzystne bakterie w jelitach, a zwykle dzieci z autyzmem mają za mało tych bakterii i w efekcie występuje u nich niedobór biotyny.

Colostrum – jest to wyciąg z siary zwykle pochodzenia krowiego, który ma zwiększać odporność, walczyć z patogenami zasiedlającymi organizm, odbudowywać śluzówkę jelita, regenerować uszkodzone tkanki, równoważyć poziom cukru.

Wapń  - jest istotny, gdy dziecko jest na diecie bezkazeinowej o podczas chelatacji ołowiu. Wapń podaje się z pożywieniem, najlepiej w formie cytrynianu (calcium citrate) czy glukonianiu (calcium gluconate). Dobrze go podawać łącznie z magnezem, gdyż magnez reguluje prawidłowy transport wapnia do tkanek jak kości. Dzienna dawka dla dzieci w wieku 4-8 lat to 800 mg, dla dzieci w wieku 1-3 lat – 500 mg, dla dzieci powyzej 8 roku życia – 1300 mg.

L-karnityna, jest to aminokwas, który często u autystów jest w niedoborze, pomaga na obniżone napięcie mięśniowe i zaburzenia w produkcji energii w komórkach.

L-karnozyna pomaga przy drgawkach. U pozostałych dzieci, u których nie odnotowano drgawek, nie jest polecana, może wywoływać obniżenie nastroju.

Cholina – jej brak powoduje problemy z wątrobą, ale ma też pozytywny wpływ na funkcje mózgu, w szczególności w formie fosfatidylcholiny albo lecytyny.

Chrom to pierwiastek śladowy, który reguluje poziom cukru we krwi. Jest to problem u wielu dzieci z autyzmem, a wahania cukru we krwi mogą powodować napady złości czy histerie bez powodu.

Miedź, często jest podwyższona u dzieci z autyzmem, co ma związek z niskim poziomem cynku.  Rzadko występuje jej obniżenie gdyż łatwiej się wchłania u duzej czesci autystow. Miedź jest istotna dla wielu reakcji w organizmie, w tym dla produkcji neuroprzekaźników. Niestety może być, podobne jak żelazo, rownież prooksydantem (nasilać stres oksydacyjny ktory już jest duży w autyzmie), dlatego jej suplementacja jest zwykle niewskazana.

Długotrwała suplementacja cynkiem może obniżać poziom miedzi.

CoQ10 (koenzym Q10) podawany jest w przypadku zaburzeń mitochondrialnych. W diecie jest niemal niedostępny. Należy podawać go rano, najlepiej razem z witaminą C lub E. Dzienna dawka waha się od 30 do 200 mg.

Enzymy trawienne - często są wytwarzane przez dzieci z autyzmem w niewystarczającym stopniu. Należy podawać je z posiłkiem. Oznakami niedoboru enzymów są wzdęcia, problemy z wypróżnianiem się, niestrawione resztki pokarmów w kale.

Ostropest plamisty – chroni miąższ wątroby, ma działanie przeciwutleniające. Zalecany w trzech dawkach dziennie po 20-80 mg. Nie jest szkodliwy nawet w dużych ilościach. W razie problemów z wątrobą przydatny jest również karczoch.

DMG, dimetylglicyna to aminokwas, który u niektórych dzieci poprawia komunikację i wytrzymałość. Może powodować hiperaktywność – wówczas warto wypróbować TMG (trimetylglicynę) – posiada więcej grup metylacyjnych. Podaje się ten preparat rano. W przypadku częstych u autystów problemów z metylacją, DMG jest szczególnie korzystne bo poprawia działanie cyklu metylacyjnego i wzmaga funkcje detoksykujące organizmu. Dla dziecka o wadze 22 kg sugerowana dawka DMG to 125-375 mg, 33 kg – 190-560 mg.

Sól Epsom (sól gorzka, siarczan magnezu) – stosowana przezskórnie (np w formie kapieli), zawiera jony magnezu i niezbedne dla autystów siarczany. Natychmiastowo ma działanie uspokajające , stosowane regularnie ma uzupełniac magnez w organizmie ktory ciągle jest zużywany u autystów .

Niezbędne kwasy tłuszczowe są bardzo istotne dla licznych funkcji organizmu, w tym rozwoju i funkcjonowaniu mózgu. Dzieci z autyzmem mają generalnie niedobór kwasów omega 3, wśród nich DHA ma główny wpływ na funkcję mózgu. W przeciętnej diecie stosunek omega6 do omega 3 jest jak 10 do 1, powinien być 2 do 1.

Siemię lniane to źródłe omega-3 i błonnika spożywczego. Należy spożywać siemię świeżo mielone. Doskonale działa na zatwardzenia, acz niektórzy rodzice donoszą że moze mieć działanie drażniące na śluzowke jelit.

Kwas foliowy – jeśli dziecko jest po nim agresywne, podaj kwas folinowy (L-5-methyl tetrahydrofolate) – najlepiej absorbowany rodzaj tego kwasu.

GABA (Gamma-aminobutyric acid) to główny neuroprzekaźnik w mózgu i podawanie go pomaga na zaburzenia zachowania, komunikacji, kontaktu wzrokowego. Nie jest polecany u dzieci z wysoką dopaminą.

Czosnek używany jest jako środek przeciwgrzybiczny. Zawiera dużo siarki i powinien być unikany przez osoby nie tolerujące siarki.

  • Glutation (GSH) to przeciwutleniacz, wytwarzany przez organizm w celu detoksykacji. Jego suplementacja nie jest polecana u osób zatrutych metalami ciężkimi, głównie rtęcią.

Inozytol – dawka maksymalna 1000 mg dziennie. Pomaga w dysfunkcjach układu odpornościowego, działa jako antydepresant, redukuje zachowania kompulsywno-obsesyjne.

Glutamina – dawka dzienna 1-4g, poprawia stan jelit i układ odpornościowy. Nie zalecana u osób z podwyższonym poziomem glutaminianu, którego nadmiar jest szkodliwy dla mózgu.

Żelazo nie powinno być suplementowane, chyba że występuje jego znaczny niedobór.

Lit używany w leczeniu chorób psychicznych, pomaga na wyrównanie nastroju, Podawany w bardzo małych dawkach.

Magnez to niezbędny pierwiastek, a jego suplementacja jest wymagana. Może poprawić nastrój, apetyt, napięcie mięśniowe, sen. Zmniejsza tiki i nietolerancję fenoli. Nadmiar spowoduje rozwolnienie. Można przyjmować go przeskórnie poprzez kąpiele w solach magnezu, ale w ten sposób wchłonie się niewielka jego ilość.

Melatonina - to przeciwutleniacz, niezbędny dla prawidłowej funkcji mózgu. Dzieci z autyzmem nie wytwarzają go często we właściwej ilości. Pomaga w zasypianiu. Dawka 1 mg dziennie, na pół godziny przed snem.

Molibden to pierwiastek śladowy obniżający poziom miedzi.

NAC (N-Acetylcysteine) to antyoksydant, którego nie powinni przyjmować pacjenci z wysokim poziomem cysteiny w osoczu. Może pogorszyć stan organizmu przy rozroście grzybów.

NAG (N-acetyl glucosamine) leczy jelito popzrez odbudowę śluzówki.

Niacyna (witamina B3) w wysokich dawkach powoduje wysypki. Bierze udział w wielu przemianach enzymatycznych

Kwas pantotenowy (witamina B5) pomaga na problemy z nadnerczami i alergie. Nie jest toksyczna, w dużych dawkach powoduje rozwolnienie.

Fosfatidylcholina pomaga na wątrobę, funkcje mózgu i trawienie. Produkowana jest z soi lub jajek. Jest aktywnym składnikiem lecytyny. Sugerowana dawka 1500-9000 mg dziennie.

Fosfatidylserina poprawia koncentrację i nastrój, redukuje “mgłę umysłową”. Sugerowana dawka 100-200 mg dziennie.

Pycnogenol/ekstrakt ze skórek lub nasion winogron – to bardzo silne antyoksydanty.

Probiotyki to suplementy zawierające korzystne bakterie i podawane w celu zasiedlenia nimi przewodu pokarmowego. Jest ogromna różnorodność probiotyków, dobrze jest rotować je w krótkich odstępach czasu.

Selen to pierwiastek śladowy. Polecany w formie drożdży selenowych albo selenometioniny. Wspiera transport cynku do komórek. Większość dzieci z ASD ma niedobór selenu. W szczególności dotyka on osób zatrutych rtęcią.

Tauryna jest niezbędna do produkcji żółci w wątrobie. Pomaga na zaburzenia snu

Witamina A pomaga na wiele różnych sposobów przy problemach ze wzrokiem, leczy cieknące jelito, a protokół podawania witaminy A w wysokich dawkach jest korzystny dla dzieci, o których po szczepieniu MMR wystąpiła retencja wirusa odry. Wzmacnia układ odpornościowy. Wiele osób podaje olej z wątroby dorsza jako źródło tej witaminy. W dużych dawkach jest szkodliwa – przy pojawieniu się mdłości, bólu głowy, wysypek w okolicach szyi należy przerwać podawanie.

Witamina B to grupa wielu witamin:

Witamina B1 – tiamina – bierze udział w wielu procesach metabolicznych, zwykle jej niedobór występuje przy zatruciu ołowiem i zakażeniu clostridią.

Witamina B2 – ryboflawina – niedobór występuje przy mutacji genu MTHFR

Witamina B6 – pirydoksyna – jej metylowana forma to P5P. Najlepiej podawać ją z magnezem i cynkiem. W wielu badaniach wykazano, że u około 50% dzieci z autyzmem duże dawki witaminy B6 przynoszą doskonałe rezultaty w zakresie mowy, kontaktu wzrokowego, zainteresowania otoczeniem. Dawka maksymalna to 17 mg/kg B6 albo 3 mg/kg P5P (formy metylowanej). Nawet wysokie dawki są bezpieczne. Efekty pojawiają się zwykle w ciągu 6-8 tygodni. Najlepiej podawać łącznie z magnezem.

Witamina B-12 – kobalamina – rtęć zaburza procesy wytwarzania jej w organizmie, u dzieci z autyzmem stosuje się często zastrzyki z MB12 (metylkobalaminą), które są dostępne na receptę. Rodzice często podają najpierw MB12 w formie doustnej albo wcierek, jest jednak ona dużo gorzej absorbowana. Witamina B12 ma ogromną rolę w cyklu metylacyjnym. Najdokładniejszym testem na ewentualny niedobór witaminy B12 to badanie poziomu kwasu metylmalonowego w moczu lub krwi.

Witamina C to silny przeciwutleniacz, wspomaga układ odpornościowy. Większość dzieci z autyzmem ma jej zbyt mało. Sugerowana dawka początkowa to 5-10 mg/kg dziennie w kilku dawkach i należy ją zwiększać do ok. 50 mg/kg dziennie (zależnie od indywidualnej tolerancji, pojawienie się rozwolnienia to znak, że witaminy C jest za dużo).

Witamina D ito witamina rozpuszczalna w tłuszczach. U dzieci z autyzmem występują często jej duże niedobory.

Witamina E to rownież przeciwutleniacz, rozpuszczalny w tłuszczach. Najlepiej przyswajalna w formie mieszanki kilku tokoferoli. Większość dostępnej na rynku witaminy E sporządzana jest z soi i może to stanowić problem dla alergików.

Witamina K odgrywa rolę w gospodarce wapniem.

Cynk, jest istotny dla funkcji mózgu, nadnerczy, układu pokarmowego i odpornościowego. Obniża poziom miedzi w organizmie. Najlepiej podawać go poza posiłkami, często w małych dawkach. Niedobór cynku może objawiać się we wkładaniu do buzi różnych przedmiotow i brakiem apetytu. Początkowa dawka to 1-2 mg/kg dziennie, maksymalna to 50 mg dziennie. Wobec osób poddanych chelatacji wielu lekarzy (dr A. Cutler, dr B. Jepson i inni) stosują dawkę równą wadze osoby w kg + 20 mg cynku. Co kilka miesięcy warto jest badać poziom cynku we krwi. Nadmiar cynku wypłukuje miedź, więc warto kontrolować poziom również tego minerału.

 L. Theanine  – ma działanie uspokajające, zawierają go liście herbaty i odpowiada za wyjątkowy smak zielonej herbaty. Zwiększa poziomy dopaminy i GABA.

Winpocetyna  (Vinpocetine) poprawia funkcje mózgu, pamięć krótkoterminową, zwiększa dopływ krwi do mózgu oraz pozwala czerwonym krwinkom lepiej transportować tlen.

Lukrecja – jest to zioło, które zwiększa energię i zdolności radzenia sobie organizmu ze stresem. Ma działanie przeciwzapalne. Zwiększa poziom kortyzolu i pośrednio wspiera nandercza. Wspomaga leczenie ran.

 Ashwaganda – zwiększa poziom energii, wspomaga pracę nadnerczy, jest ziołem z grupy adaptogenów – reguluje poziom kortyzolu.

 Żeńszeń  – pomaga na nadnercza, zwiększa poziom energii, pomaga w zaburzeniach snu, stymuluje odporność przeciw wirusom i bakteriom, zwiększa absorpcję witamin z grupy B, normalizuje ciśnienie krwi. Częściowo wspomaga nandercza.

Quercetin – zapobiega wydzielaniu się histamin i kontroluje reakcje układu odpornościowego, zwiększa poziom dopaminy

Dziurawiec – zapobiega rozpadowi serotoniny, poprawia nastrój i koncentrację

Tłuszcze i oleje

Olej kokosowy. Kwas laurowy zawarty w oleju kokosowym w jelitach konwertuje się do monolauryny. Ma działanie przeciwgrzybiczne i przeciwwirusowe. Zacznij od łyżeczki tego oleju, najlepiej podawanego z pożywieniem wysokobłonnikowym.

Olej lniany. Olej lniany tolerowany jest dobrze przez dzieci, które nie mają drgawek czy migren. Jest niezbędny do bilansowania kwasu linoleinowego, który jest obecny w oleju kukurydzianym, słonecznikowym i sojowym.

Olej z wiesiołka. Zwykle u osób z autyzmem potrzebna jest jego niewielka ilość, a osoby zdrowe nie potrzebują tego suplementu, gdyż ich enzymy desaturazy działają dobrze. Zwykle u autystów enzym delta-6 desaturaza nie funkcjonuje prawidłowo, na co ma wpływ zły stan tarczycy i infekcje wirusowe. Niektóre oleje, np. olej z wiesiołka ale też i witaminy (A, E, B6, B3, B12 i biotyna) wspierają działanie tego enzymu.

Olej rybi. Jest cennym źródłem witamin A,D,E i K, które redukują stan zapalny. Nie zawsze jest dobrze tolerowany. Najlepszy jest olej z wątroby rybiej.

Masło. W maśle klaryfikowanym jest bardzo mało kazeiny i ma działanie kojące dla przewodu pokarmowego.

2. Diagnostyka medyczna

badanie zawartości pierwiastków we włosie

Badanie przydatne do określenia stopnia zatrucia metalami ciężkimi i stanu odżywienia organizmu w niezbędne pierwiastki. Najbardziej rzetelne i najłatwiejsze do zinterpretowania dzięki opracowanym przez dr A. Cutlera regułom jest badanie włosa wykonane przez laboratorium Doctor’s Data w USA. Jego koszt nie jest duży i jest w zasadzie równy kosztowi badań włosa wykonanych w Polsce. Można wykonać je chociażby przez www.directlabs.com (badania włosa, badania związane z autyzmem) – koszt 118$ albo przez Holistic Health. Nie można zamówić tego badania bezpośrednio w Doctor’s Data z uwagi na fakt, iż do jego zamówienia potrzebne jest zlecenie lekarskie – w Directlabs czy Holistic Health zatrudnieni są lekarze, którzy takie zlecenia podpisują. Zestaw do pobrania próbki składa się z koperty, do której wrzucamy odpowiednią ilość włosów wyciętych z tyłu głowy, przy samej skórze. Do badania niezbędne jest tylko 2,5 cm włosa wycinanego od samej skóry. W zestawie znajduje się miarka ułatwiająca pobranie włosów.

badanie poziomu aminokwasów w moczu

Do badania potrzebny jest mocz z całodobowej zbiórki. Badania określają poziom podstawowych aminokwasów w moczu, co pozwala na ustalenie niedoborów witamin i minerałów, jak również innych bardziej szczegółowych kwestii (np. podwyższony amoniak, cysteina i tauryna mogą świadczyć o nieprawidłowym metabolizmie siarki u dziecka). Badanie można zamówić samemu bezpośrednio z Great Plains Lab albo Genova Diagnostics – koszt badań ok. 285$. Wówczas otrzymujemy do domu zestaw do pobrania próbki – po jej pobraniu należy ją niezwłocznie wysłać kurierem do USA (koszt wysyłki ok. 350 zł). W wysyłce pośredniczą również polskie firmy (wysyłka jest raz na miesiąc i trzeba dostosować się do terminu) – http://www.genom.com.pl/ i http://www.vegamedica.pl/

badanie poziomu kwasów organicznych w moczu

Jest to badanie, które dostarcza informacji o obecności w moczu metabolitów różnych substancji i organizmów znajdujących się w naszym ciele. Grzyby, bakterie to organizmy które wydalają różne produkty przemiany materii do organizmu i badając ich poziom w moczu możemy określić ile jakich organizmów w nas przebywa. Nadto inne substancje – neuroprzekaźniki, witaminy, składniki cyklu Krebsa itp również produkują swoje metabolity. Badanie poziomu kwasów organicznych jest w stanie określić, w jakim stanie organizm znajduje się na dzień badania. Do jego przeprowadzenia wystarczy próbka porannego moczu. Badanie można zamówić samemu bezpośrednio z Great Plains Lab albo Genova Diagnostics – koszt badań ok. 285$. Wówczas otrzymujemy do domu zestaw do pobrania próbki – po jej pobraniu należy ją niezwłocznie wysłać kurierem do USA (koszt wysyłki ok. 350 zł). W wysyłce pośredniczą również polskie firmy (wysyłka jest raz na miesiąc i trzeba dostosować się do terminu) – http://www.genom.com.pl/ i http://www.vegamedica.pl/ .
Badanie przeprowadzić można również we francuskim laboratorium Laboratoire Philippe Auguste. Wówczas znacznie niższy jest koszt wysyłki – mocz  wystarczy wysłać zwykłą pocztą.

badanie poziomu witaminy D-25OH

badanie poziomu cynku i miedzi we krwi

Badanie dostępne w większości polskich laboratoriów, przydatne do stwierdzenia, czy poziom miedzi nie jest za wysoki (toksyczne działanie miedzi może powodować objawy autystyczne) albo za niski (np. przy długotrwałej suplementacji cynkiem).

całkowite kompleksowe badanie kału

Do badania wysyła się kilka próbek kału z kilku dni. Na tej podstawie po analizie mikroskopowej laboratorium określa poziom korzystnych i niekorzystnych bakterii, grzybów i pasożytów. Laboratoria amerykańskie określają również inne parametry świadczące o produkcji żółci czy stopniu strawienia pokarmu. W Polsce badanie można przeprowadzić przez Instytut Mikroekologii - jest to badanie KyberStatus. Można również wysłać zamrożone próbki do laboratoriów amerykańskich – np. Great Plains Lab czy Genova Diagnostics.

badanie ASO

badanie poziomu peptydów w moczu

Badanie przydatne jest do określenia stopnia trawienia przez dziecko glutenu i kazeiny. Wykonuje się je z jednej próbki moczu. Badanie można zamówić samemu bezpośrednio z Great Plains Lab albo przez Laboratoire Phillipe Auguste we Francji. Wówczas otrzymujemy do domu zestaw do pobrania próbki – po jej pobraniu należy ją niezwłocznie wysłać kurierem do USA (koszt wysyłki ok. 350 zł).

panel metylacyjny

Badanie dostarcza informacji o indywidualnych mutacjach genów odpowiedzialnych za cykl metylacyjny dziecka. Przeprowadza się je raz w życiu. Dostarcza odpowiedzi na pytanie o indywidualne predyspozycje genetyczne dotyczące funkcjonowania różnych układów oraz sugeruje sposób odżywiania i suplementacji zgodny z zasadami nutrigenomiki, który ma za zadanie obejść ewentualne przeszkody w cyklu metylacyjnym. Badanie kosztuje 495$ i jest wykonywane z krwi, którą trzeba pobrać z palca na specjalną bibułkę (można to zrobić w domu). Badanie dostępne jest tutaj. Na wynik czeka się nawet do 14 tygodni. W Polsce można zbadać mutację genu MTHFR. Wynik tego badania, bez powiązania z mutacjami innych genów, nie dostarcza jednak jednoznacznych odpowiedzi.

badanie w kierunku wirusów

Badanie można przeprowadzić poprzez zmierzenie we krwi poziomu nagalase – enzymu, wydzielanego przez wirusy w celu osłabienia ludzkiego układu odpornośniowego. Można je wykonać w European Laboratory w Holandii. Po przesłaniu do laboratorium wydrukowanego ze strony www formularza zamówienia (musi być w prawym górnym rogu podbity pieczątką lekarza, jakikolwiek lekarz może zlecić to badanie) na którym zaznaczyć należy w dziale Miscellaneous “nagalase” – otrzymamy probówkę i instrukcję jak pobrać próbkę do badań. Zamrożoną próbkę wysyłamy kurierem. Koszt – 50 euro

badanie porfiryn w moczu

Badanie wykonuje się w celu ustalenia stopnia obciążenia organizmu rożnymi metalami ciężkimi. Można je wykonać przez Laboratoire Phillipe Auguste we Francji z jednej próbki moczu. Szczegółowe informacje tutaj.

badanie w kierunku pyrolurii

W Europie tanio i szybko badanie takie wykonuje KEAC w Holandii. Wystarczy do niego jednak poranna próbka moczu w ilości 10 ml. Na tej stronie znajduje się adres e-mailowy pod którym można zamówic zestaw do pobrania moczu. Koszt badania 53 euro.

badanie przepuszczalności jelita

Do badania wysyła się próbki kału, których analiza odpowie na pytanie, w jakim stopniu jelito dziecka przepuszcza toksyny i niestrawione resztki pokarmów do krwioobiegu. Badanie można zamówić samemu bezpośrednio z Holistic Health albo Genova Diagnostics – koszt badań ok. 110$. Wówczas otrzymujemy do domu zestaw do pobrania próbki – po jej pobraniu należy ją niezwłocznie wysłać kurierem do USA (koszt wysyłki ok. 350 zł).

badanie nietolerancji pokarmowych

Do badania wysyła się odwirowaną krew z dwóch probówek. Dostępne są różne rodzaje testów, w zależności od ilości pokarmów do przebadania. Np ImuPro 300 bada nietolerancje pokarmowe na ponad 300 różnych pokarmów. Badanie można przeprowadzić w Polsce przez Instytut Mikroekologii. Wynik badania pozwoli lepiej dostosować dietę do potrzeb dziecka. Badanie można przeprowadzić również za pośrednictwem laboratoriów sieci Diagnostyka.