Czy plomby amalgamatowe są bezpieczne dla ludzi? Opinia komitetu naukowego Komisji Europejskiej

Joachim Mutter

Wydział Medycyny Środowiskowej i Integracyjnej, Lohnerhofstraße 2, 78467 Constance/Germany

Journal of Occupational Medicine and Toxicology 2011, 6:2 doi:10.1186/1745-6673-6-2

© 2011 Mutter; licensee BioMed Central Ltd.

Streszczenie

Naukowy Komitet Nowo Zidentyfikowanych Zagrożeń Zdrowotnych (Scientific Committee on Emerging and Newly Identified Health Risks, SCENIHR) w raporcie dla Komisji Europejskiej stwierdził, iż “…nie istnieje ryzyko negatywnych efektów dla całego układu zdrowotnego i aktualne wykorzystywanie amalgamatów w plombach nie niesie ryzyka choroby układowej… ” [1, dostępne z: http:/ / ec.europa.eu/ health/ ph_risk/ committees/ 04_scenihr/ docs/ scenihr_o_016.pdf webcite].

SCENIHR zignorował toksykologię rtęci i nie zawarł w swojej opinii najbardziej podstawowych badań naukowych. Prawdziwe dane naukowe pokazują, że:

(a) Plomby amalgamatowe to główne źródło całkowitego obciążenia rtęcią u człowieka. Zostało to udowodnione badaniami autopsyjnymi, które wykazały 2-12 razy więcej rtęci w tkankach ciała u osób z amalgamatami. Badania autopsyjne to najbardziej wartościowe I ważne badania dla pomiaru całkowitego obciążenia organizmu rtęcią.

(b) Te badania wykazały jasno i spójnie, że wiele osób z amalgamatami ma toksyczne stężenia rtęci w mózgach i nerkach.

(c) Nie ma korelacji między poziomem rtęci we krwi czy moczu a poziomem rtęci w tkankach ciała czy stopniem objawów klinicznych. SCENIHR oparł się wyłącznie o pomiary rtęci w moczu i krwi.

(d) Okres półtrwania rtęci w mózgu może trwać od kilkunastu lat do dekad, rtęć kumuluje się przez cały czas ekspozycji na amalgamaty, osiągając poziomy toksyczne. Jednakże SCENIHR ywierdzi, że okres półtrwania rtęci w mózgu to tylko (20-90 dni).

(e) Opary rtęci są około 10 razy bardziej toksyczne niż ołowiu, jeśli chodzi o wpływ na neurony ludzkie i wykazują synergistyczną toksyczność z innymi metalami.

(f) Większość badań zacytowanych przez SCENIHR które kończą się wnioskami, że plomby amalgamatowe są bezpieczne, charakteryzują się poważnymi błędami metodycznymi.

Plomby amalgamatowe to podstawowe źródło rtęci w tkankach ludzkiego ciała

SCENIHR twierdzi, że [1]: “Ekspozycję na rtęć trudno zmierzyć. W związku z tym wskaźniki tej ekspozycji uzyskano poprzez zmierzenie rtęci w moczu i krwi poszczególnych osób.”

SCENIHR nie zacytował żadnych badań opartych na autopsji, które są najbardziej wiarygodne w ocenie poziomu rtęci w tkankach.

Zaobserwowano około dwu-pięciokrotny wzrost poziomu rtęci w moczu i krwi u osób żyjących z plombami amalgamatowymi i dwu-dwunastokrotny wzrost poziomu rtęci w różnych tkankach ciała u zmarłych z amalgamatami [2-21]. Ponadto badania na zwierzętach potwierdziły fakt, że amalgamaty prowadzą do znacząco wyższych stężeń w tkankach [22-28].

Według tych badań, plomby amalgamatowe są odpowiedzialne za przynajmniej 60-95% obciążenia rtęcią w tkankach ciała. Tego nie uwzględnił SCENIHR.

Czy plomby amalgamatowe nie zawierają rtęci organicznej?

SCENIHR [1] twierdzi że “nie ma dowodu na to, że dochodzi do biotransformacji rtęci z amalgamatu w ustach w połączeniu z działaniem bakterii.”

W przeciwieństwie do tego stwierdzenia, są badania które wykazały że rtęć (Hg) z amalgamatów jest transformowana do rtęci organicznej przez mikroorganizmy w ludzkim układzie pokarmowym [29-31]. Leistevuo et al. (2001) wykrył trzykrotny wzrost poziomu rtęci metylowanej w ślinie osób z amalgamatami w porównaniu z osobami bez amalgamatów, chociaż częstotliwość i rodzaj konsumowanych ryb były w obu grupach identyczne. Poziomy rtęci w ślinie przekraczały normy rtęci dla kanalizacji u 20% osób z amalgamatami [30]. Forma rtęci metylowanej zawartej w plombach amalgamatowych może być bardziej toksyczna (do 20 razy) niż rtęć metylowana zawarta w rybach.

Toksyczne poziomy rtęci in vitro oraz in vivo

Poziomy rtęci nieorganicznej rzędu 0.02 ng Hg/g (0.1 μMolar Hg w ilości 2 μl w 2 ml roztworze) doprowadziły do całkowitego zniszczenia wewnątrzkomórkowych mikrotubuli i degeneracji aksonów [32]. W innych eksperymentach poziomy rtęci nieorganicznej rzędu 36 ng Hg/g (0.18 μMol Hg) doprowadziły do stresu oksydacyjnego i co za tym idzie, uszkodzenia komórek [33,34].

Wdychanie oparów rtęci w dawkach, które dostępne są dla osobami z wieloma plombami amalgamatowymi, doprowadziły do patologicznych zmian w mózgach zwierząt po 14 dniach [35,36].

Plomby amalgamatowe nie prowadzą do toksycznych stężeń rtęci u ludzi?

W niedawnych badaniach autopsyjnych ustalono, że osoby z więcej niż 12 plombami amalgamatowymi mają ponad 10-krotnie wyższe poziomy rtęci w różnych tkankach, w tym w mózgu, w porównaniu do osób z 0-3 plombami amalgamatowymi [11].

Średni poziom rtęci w mózgu obywatela UE, który ma ponad 12 plomb amalgamatowtch wynosił 300 ng Hg/g w tkance mózgu[11], co jest daleko ponad udowodnioną toksyczną dawkę dla neuronów (0.02 -36 ng Hg/g) (jak wskazano wyżej).

W innych badaniach osoby z ponad 10 plombami amalgamatowymi miały 504 ng Hg/g w tkankach nerek (0-2 amalgamatów: 54 ng Hg/g) i 83.3 ng Hg/g w wątrobie (0-2 amalgamatów: 17.68 ng Hg/g) [5].

Poziomy rtęci w gruczołach tarczycy i przysadki wynosiły odpowiednio 55 ng Hg/g i 200 ng Hg/g i ilości te miały związek z ilością plom amalgamatowych [37].

Z uwagi na faktm że te poziomy są tylko poziomami średnimi, duża część osób z amalgamatami ma ponad dwukrotne poziomy toksyczne rtęci z tkankach ciała Podkreślić należy, że poziomy rtęci stwierdzone w częściach komórki takich jak mikrosomy, mitochondria i inne przekraczają nawet średnie poziomy w tkankach mózgu analizowane w tych badaniach [38].

Toksyczne poziomy rtęci w chorobie Alzheimera

Średnie obciążenie rtęcią w tkankach mózgu u osób z chorobą Alzheimera wynosiło 20 do 178 ng Hg/g; w niektórych przypadkach dochodziło nawet do 236- 698 ng Hg/g. W 15% próbkach tkanki mózgowej obciążenie rtęcią wynosiło ponad 100 ng Hg/g [39-41]. Średnie obciążenie rtęcią w przysadce wynosiło 400 ng Hg/g [42]. Te poziomy znacznie przekraczają poziomy toksyczne (patrz wyżej).

Patologiczne zmiany, spowodowane przez rtęć, w wielu mózgach Niemców?

Około 20% dwudziestolatków, 50% pięćdziesięciolatków i 90% 85-latków zamieszkałych w Niemczech ma patologiczne zmiany w mózgu typowe dla choroby Alzheimera [43] i toksyczności rtęci. Ten rozkład patologicznych zmian w mózgu spowodowanych bardzo niskimi poziomami rtęci a nie innych metali (np. ołowiu, żelaza, aluminium, miedzi, manganu, chromu, kadmu) [32,36] przypomina rozkład częstotliwości plomb amalgamatowych u ludzi: około 80-90% Niemców przez wiele dziesięcioleci miało założone takie plomby. Warto zauważyć, że około 30-50% Niemców powyżej 85 roku życia ma chorobę Alzheimera i wiele przemawia za tym, że główną rolę w jej patogenezie odgrywa rtęć [44].

Amalgamaty u matki jako główne źródło rtęci w tkankach dziecka

Amalgamaty u matki powodują znaczący wzrost poziomów rtęci w tkankach ciała płodu i noworodka, w tym w mózgu [6]. Co więcej poziom rtęci w łożysku, u płodu i noworodka jest skorelowany z ilością plomb amalgamatowych u matki [6,45-52].

Poziomy rtęci w wodach płodowych [53] i mleku kobiecym [54-56] również są skorelowane z ilością plomb amalgamatowych u matki.

Rtęć w tkankach noworodka: zwiększone ryzyko zaburzeń rozowojowych?

Drasch et al. stwierdzili poziomy rtęci do 20 ng Hg/g w mózgach niemieckich noworodków, co było spowodowane głównie wpływem plomb amalgamatowych ich matek [6]. Jak opisano powyżej poziomy rtęci rzędu 0,02 ng Hg/g prowadziły do degeneracji aksonów [32]. Co więcej, poziomy rtęci w mózgach noworodków, których matki miały plomby amalgamatowe, są wystarczająco wysokie aby zahamować działanie ważnego enzymu syntetazy metioninowej [57,58]. Jest to enzym niezbędny dla metyzacji, najistotniejszy punkt najważniejszych przemian metabolicznych w ciele, w tym rozwoju mózgu, dojrzewania komórek nerwowych i produkcji neuroprzekaźników.

Plomby amalgamatowe u matek zwiększają dodatkowo znacznie poziomy rtęci w krwi pępowinowej [59,60]. Ryzyko opóźnionego rozwoju u dzieci było 3.58 razy większe, kiedy poziomy rtęci w krwi pępowinowej przekraczały 0.8 ng Hg/ml [61]. Warto podkreślić, że poziomy rtęci w krwi pępowinowej od 0.2 do 5 ng Hg/ml są oceniane jako “w normie” w Niemczech [62], co pozostawia wiele noworodków z takimi poziomami rtęci, które mogą spowodować deficyty neurorozwojowe.

Nie ma korelacji między rtęcią w moczu albo krwi oraz w tkankach ciała

Raport SCENIHR jest oparty na badaniach, w których mierzono poziomy rtęci we krwi i w moczu jako wskaźnik obciążenia rtęcią całego ciała. Jednakże WHO twierdzi (1991) że

“Toksyczność rtęci jest typu “retencyjnego” i większość rtęci, która trafia do ciała, jest absorbowana przez tkanki. Ilość w moczu odzwierciedla rtęć wydalaną. Pozostaje jednak główne pytanie, ile rtęci odkłada się w różnych tkankach ciała”.

Wykazano w eksperymentach na ludziach i zwierzętach, że mimo normalnych albo niskich poziomów rtęci we krwi, włosach i moczu, bardzo wysokie poziomy rtęci ujawniono w istotnych tkankach ciała, jak mózg i nerki [7,13,20,22,25,28,46,63,64]. Niedawne badania na osobach zmarłych potwierdziły, że nie ma żadnej korelacji między poziomami rtęci nieorganicznej w krwi czy moczu a poziomami rtęci w mózgu [37].

Drasch i współpracownicy udowodnili, że 64% osób, które zawodowo są poddane ekspozycji na opary rtęci i wykazują typowe oznaki zatrucia rtęcią miały poziom rtęci w moczu poniżej 5 μg/l, czyli poziom bez widocznych efektów ubocznych (No Observed Adverse Effect Level  - NOAEL). To samo stwierdzono wobec rtęci we krwi i we włosie [65-67].

Paradoksalny związek między poziomem rtęci w moczu a objawami klinicznymi

Istnieje nawet dość paradoksalny związek między poziomami rtęci w moczu, krwi czy włosach a objawami klinicznymi: Osoby z najwyższymi poziomami rtęci w moczu najszybciej dochodziły do zdrowia po problemach neuropsychologicznych związanych z usuwaniem plomb amalgamatowych [68]. Również dzieci z najwyższymi poziomami rtęci we włosach lepiej sobie radziły w testach rozwojowych [69]. Inne badania wskazały, że pomimo znacząco wyższej ekspozycji na rtęć w łonie matki, dzieci autystyczne miały aż do 15 razy mniej rtęci we włosach niż zdrowa grupa kontrolna [46]. Co więcej, im niższy był poziom rtęci we włosach dziecka, tym cięższe były objawy autyzmu [46].

Pomimo wyższego obciążenia rtęcią organizmu, osoby “nadwrażliwe na amalgamat” wykazywały niższe poziomy rtęci w ślinie, krwi czy moczu [70]. Nawet po prowokacji DMPS osoby “nadwrażliwe na amalgamat” wydalały średnio tylko 7,77 μg Hg w moczu przez 24 godziny, a zdrowe osoby z amalgamatami wydalały 12,69 μg Hg/24h [70].

Co więcej badania potwierdziły, że stosunek wydalania z kałem do wydalania z moczem jest jak 12 do 1 [13]. To dowodzi, że większość wydalanej rtęci wychodzi z żółcią przez wątrobę. Rtęć wydalana z moczem to tylko 8% całości wydalanej rtęci. A zatem pomiar rtęci w moczu może jedynie pokazać, ile rtęci wydalają nerki – a nie jaka jest jej całowita ilość w organizmie.

Bezpieczne poziomy dla rtęci?

W świetle zaprezentowanych danych nie jest możliwe określenie jakichkolwik poziomów bezpieczeństwa, poniżej których efekty uboczne będą wyłączone [71]. SCENIHR określił takie poziomy, wydedukowane z badań nad osobami, które zawodowo związane są z rtęcią. Te poziomy nie mogą jednak zostać zastosowane u osób z plombami amalgamatowymi, gdyż:

a) Bardzo często brana jest pod uwagę do porównania ekspozycja na rtęć u pracowników, którzy jednocześnie pracują z chlorem, chociaż jednoczesna ekspozycja na chlor zmniejsza absorpcję rtęci do tkanek o 50-100% [72].

b) Pracownicy mający kontakt z rtęcią zwykle zaczynają tę ekspozycję w okresie dorosłości (przez około 8 godzin dziennie i 5 dni w tygodniu) podczas gdy zatruci z amalgamatów mogą zostać poddani ekspozycji na rtęć już w łonie matki, przez jej amalgamaty od czasu dzieciństwa aż do śmierci, 24 godziny dziennie i 7 dni w tygodniu.

c) Pracownicy to grupa ogólnie zdrowa, podczas gdy ciężarne kobiety, noworodki, dzieci, osoby z różnymi chorobami (stwardnienie rozsiane, choroby autoimmunologiczne, nowotowory) w ogóle nie przystępują do pracy z powodu przepisów BHP albo z powodu problemów, które pojawiają się we wczesnym okresie pracy.

d) Pomimo ekspozycji na rtęć poniżej “poziomu bezpieczeństwa” znaczące efekty uboczne stwierdzono również w badaniach nad osobami zawodowo narażonymi na ekspozycję na rtęć, nawet w kilkanaście lat po ustaniu ekspozycji [73-81].

Okres półtrwania rtęci w ciele

SCENIHR twierdzi, że okres półtrwania rtęci w ciele to “20-90 dni”.

Szczególnie w mózgu rtęć ma znacząco dłuższy okres półtrwania – więcej niż 17 lat [63,64,82-87].

Toksyczność rtęci

SCENIHR nie wspomniał o specyficznej toksyczności oparów rtęci pochodzących z plomb amalgamatowych. Powinno się to szacować następującą analizą ryzyka:

Rtęć jest 10 razy bardziej toksyczna od ołowiu, co wykazały badania in vitro [88-90]. Rtęć jest najbardziej toksycznym nie-radioaktywnym pierwiastkiem. Opary rtęci to jedna z najbardziej toksycznych form rtęci na równi z rtęcią organiczną. O tej nadzwyczajnej toksyczności rtęci świadczą następujące okoliczności:

a) Rtęć jest jedynym metalem, który w temperaturze pokojowej jest gazem bardzo łatwo absorbowanym przez układ oddechowy (80%).

b) Opary rtęci z amalgamatów wnikają do tkanek bardzo łatwo z uwagi na monopolarową konfigurację atomową.

c) Wwenątrz komórek opary są oksydowane do Hg2+, bardzo toksycznej formy rtęci, która wiąże się ściśle z grupami tiolowymi różnych protein, uniemożliwiając ich aktywność biologiczną.

d) Hg2+ jest bardziej toksyczna niż Pb2+, kadm (Cd2+) I inne metale, bo ma większą retencyjność w ciele z uwagi na silną więź z grupami tiulowymi (cysternami w białkach), co powoduje nieodwracalne zahamowanie ich aktywności. Inne metale tworzą odwracalne więzi z proteinami i są dlatego mniej toksyczne.

e) Hg2+ nie wiąże się wystarczająco ściśle z grupami węglowymi naturalnych kwasów organicznych aby zapobiec jej toksyczności.

f) Chelatory takie jak EDTA, które normalnie powstrzymują efekty działania metali ciężkich jak ołów, nie mają takiego oddziaływania na toksyczność rtęci, a mogą nawet I ją zwiększać [91,92]. Inne chelatory (DMPS i DMSA) hamują toksyczne efekty Cd2+ i Pb2+, ale nie Hg2+ [93]. DMPS, DMSA albo naturalne środki jak witamina C, glutation czy kwas alfa-liponowy nie usuwają rtęci z układu nerwowego [94]. (tu niestety autor nie uwzględnił specyficznej farmakokinetyki ALA, dokładne wyliczenia na ten temat dostępne w „Amalgam Illnes”” A. Cutler). DMPS albo DMSA mogą nawet zwiększać hamujące działanie Hg2+ i Cd2+ na enzymy, co nie dotyczy Pb2+ [95]. Co więcej, DMPS u zwierząt doprowadziło do zwiększenia stężenia rtęci w rdzeniu kręgowym [96].

Toksyczność rtęci metylowanej, która znajduje się w rybach wygląda na niższą (tylko około 1/20) niż rtęci metylowanej wykorzystywanej w eksperymentach [97].

Ponadto, ryby morskie są bogatym źródłem selenu i kwasów tłuszczowych omega-3, które chronią przed toksycznością rtęci. Niezależnie od tego chlorek rtęci metylowanej, który jest bardziej toksyczny niż rtęć metylowana z ryb, był mniej neurotoksyczny dla rozwijających się układów nerwowych in vivo niż opary rtęci [98].

Badania Drascha et al. pokazują podobne korelacje: Społeczność poszukiwaczy złota, poddana ekspozycji na opary rtęci, wykazywała znacząco więcej objawów zatrucia rtęcią niż grupa kontrolna, która była poddana ekspozycji na rtęć metylowaną z ryb, pomimo że poziomy rtęci we włosach i osoczu były wyższe w porównaniu do osób poddanych ekspozycji na opary rtęci [65,66]. Inne badania wskazują też na mniejszą neurotoksyczność rtęci metylowanej z ryb, w porównaniu do jatrogennych źródeł rtęci (amalgamat, tiomersal) [46]. Tutaj, w przeciwieństwie do ilości plomb amalgamatowych u matek, nie ma korelacji pomiędzy jedzeniem ryb przez matki w ciąży i ryzykiem autyzmu u dzieci.

Podsumowując, opary rtęci z amalgamatów albo rtęć metylowana pochodząca z amalgamatów mają pełen potencjał toksyczny. Z drugiej strony rtęć metylowana w rybach już weszła w więź z proteinami w rybach albo innymi ochronnymi cząsteczkami w rybach takich jak glutation i selen, w które ryby są bogate. Co więcej, nowsze badania potwierdzają, że większość osób z plombami amalgamatowymi jest narażonych na toksyczne poziomy rtęci [99,100].

Synergistyczna toksyczność rtęci i ołowiu (Pb)

Niektórzy naukowcy próbują polemizować, twierdząc że wyniki otrzymane drogą analizy zwierząt lub komórek są przeszacowane i nieporównywalne do stanu ludzkiego organizmu. Jednakże w przeciwieństwie do zwierząt wykorzystywanych w eksperymentach, ludzie poddani są stałej ekspozycji na różne inne toksyny, a zatem ich efekty sumują się, a nawet są synergistyczne [101,102]. Na przykład udowodniono, że kombinacja śmiertelnej dawki 1% rtęci (LD1Hg) wraz z dawką śmiertelną LD1 ołowiu (Pb) skutkuje śmiercią wszystkich zwierząt, więc można sformułować następujące równanie toksykologiczne: LD1 (Hg) + LD1 (Pb) = LD 100 [101].

W tym kontekście trzeba sobie uzmysłowić, że nowoczesny człowiek ma więcej rtęci i około 1000 razy więcej ołowiu w tkankach ciała niż człowiek starożytny.

W innych eksperymentach dodanie tlenku glinu (zwykle jest on w szczepionkach), antybiotyków, tiomersalu (bywa w szczepionkach) i testosteronu zwiększyło toksyczność rtęci [108,109]. Synergistyczna toksyczność testosteronu wyjaśnia, dlaczego o wiele więcej mężczyzn niż kobiet cierpi na autyzm  czy stwardnienie boczne zanikowe.

Nie ma efektów ubocznych spowodowanych przez amalgamaty?

SCENIHR twierdzi ” Ustalono, że nie istnieje ryzyko negatywnych efektów dla całego układu zdrowotnego i aktualne wykorzystywanie amalgamatów w plombach nie niesie ryzyka choroby układowej ” oraz “….niektóre sporadyczne efekty uboczne mają czasami związek z amalgamatami ale występują rzadko i łatwo je zneutralizować “

SCENIHR pominął liczne badania, które stwierdziły znaczące efekty zdrowotne spowodowane plombami amalgamatowymi:

Cytotoksyczność amalgamatu w porównaniu do plomb kompozytowych

SCENIHR porównał toksyczność amalgamatów i plomb kompozytowych. Jednak w większości eksperymentów, nawet rtęć nieorganiczna – o wiele mniej toksyczna niż opary rtęci (gdyż nie penetruje tak łatwo komórek) była bardziej toksyczna niż jakikolwiek składnik kompozytu: dowiedziono, że rtęć jest 80-100 razy bardziej toksyczna dla człowieka niż jakikolwiek składnik kompozytu [110-114].

Genotoksyczność, stress oksydacyjny, nowotwór

Plomby amalgamatowe powodują uszkodzenie DNA w komórkach krwi u człowieka. [115] Nawet niskie poziomy rtęci nieorganicznej prowadzą do znaczącego uszkodzenia DNA w komórkach ludzkich tkanek i limfocytach [116]. Ten efekt, który wywołuje raka, został stwierdzony u osób z poziomem rtęci poniżej tego, który normalnie wywołuje cytotoksyczność i śmierć komórkową . Ponadto aberracje chromosomów mogą być spowodowane prze działanie amalgamatu na kultury komórkowe [117]. Osoby mające amalgamaty mają wyższe markery stresu oksydacyjnego w ślinie [118,119] i krwi [120,121]. Wzrost stresu oksydacyjnego koreluje z ilością plomb. Poziomy rtęci obserwowane normalnie w tkankach osób z amalgamatami prowadzą do zwiększonego stresu oksydacyjnego i redukcji poziomów glutationu, co powoduje uszkodzenia komórek [33,34]. Znacząco podniesione poziomy rtęci zaobserwowano też w tkankach nowotworu piersi [122]. Rtęć odłożona w tkankach wiąże się zwykle z selenem, co oznacza, że selen nie jest już dostępny dla organizmu. Amalgamaty mogą dlatego wzmagać deficyt selenu, zwykle w krajach, gdzie poziom selenu jest niedostateczny (np. Europie Środkowej) [123,124].

Odporność na antybiotyki

Udowodniono, że rtęć z plomb amalgamatowych może wywoływać odporność na rtęć u bakterii [125-127]. To prowadzi do ogólnej odporności na antybiotyki bakterii w jamie ustnej i w innych miejscach [127], co jest szczególnie prawdziwe w sytuacji, kiedy geny odpowiedzialne za odporność na antybiotyki są zawarte w tym samym operonie odporności na rtęć [128,129]. Odporność na rtęć jest powszechna u bakterii jamu ustnej człowieka [130,131]. Małpy z amalgamatami miały więcej bakterii odpornych na antybiotyki stwierdzonych w kale [127,132].

Penetracja szczęki i kości jarzmowej przez amalgamaty

Eksperymenty na małpach i owcach wykazały, że rtęć z amalgamatów łatwo penetruje korzenie zębów i kości szczęki [25,26]. Fakt, że stwierdzono to też u ludzi [133] potwierdza alternatywną drogę ekspozycji na rtęć spowodowaną przez amalgamaty.

Skóra

Jest korelacja między atopowym zapaleniem skóry, poziomami IgE i obciążeniem rtęcią [134]. Plomby amalgamatowe mogą powodować liszaje [135-139]. W ponad 90% przypadków te zmiany ustąpiły po usunięciu rtęci, niezależnie od tego, czy wyniki alergologiczne byłyt nadal pozytywne. Poprawiła się również granulomatoza [140]. Inne formy zapalenia skóry wydają się być powiązane z amalgamatami [141,142].

Zaburzenia autoimmunologiczne i nadwrażliwość na rtęć

Stała ekspozycja na rtęć w małych dawkach, powszechna u osób z amalgamatami, jest możliwym źródłem niektórych chorób autoimmunologicznych, np. stwardnienia rozsianego, artretyzmu czy tocznia rumieniowatego układowego [135,143-152]. Te efekty pojawiają się przy ekspozycji poniżej bezpiecznych limitów dla rtęci [153]. Ostatnie badania wykazały, że rtęć i rtęć etylowana na bardzo niskich poziomach mają zdolność hamowania pierwszego kroku (fagocytozy) wrodzonej  odpowiedzi immunologicznej u ludzi [154]. To pokazuje, że ekspozycja na rtęć poniżej średniej ekspozycji może powodować zaburzenia układu odpornościowego u osób w różnym wieku.

Tylko “rzadkie przypadki dowiedzionych reakcji alergicznych”?

SCENIHR akceptuje tylko “dowiedzione” reakcje alergiczne na amalgamaty, czyli pozytywny wynik na teście skórnym. Jednakże oduwodowniono, że u ponad 90% przypadków, u których stwierdzono reakcje błony śluzowej, te zmiany wyleczyły się po usunięciu amalgamatów, niezależnie od wyników testu skórnego [137,139,140]. Dlatego waga testów skórnych w wykrywaniu nadwrażliwości czy alergii na rtęć w jamie ustnej bez kontaktu rtęci ze skórą, jest kwestionowana [155].

Wyniki innych wiarygodnych badań potwierdzają, że immunologiczne problemy spowodowane amalgamatami są częstsze niż “rzadkie przypadki” [148,150,152,156-162].

Może być też korelacja między atopowym zapaleniem skóry, poziomami IgE i obciążeniem organizmu rtęcią, której nie wykażą testy skórne [134].

Z uwagi na fakt, że rtęć z amalgamatów matki jest jednym z głównych źródeł rtęci u płodu I noworodka, poporodowe atopowe zapalenie skóry znika po odtruciu dzieci z rtęci [163].

Choroby serca

Rtęć może powodować nadciśnienie i zawał mięśnia sercowego[164].

Znaczące kumulacje rtęci (22,000 razy wyższe niż w grupie kontrolnej) ujawniono w tkance serca dotkniętego niewydolnością [165].

Układ moczowy

SCENIHR zacytował tylko jedno badanie wykonane przez dentystę i opublikowane w periodyku stomatologicznym [166] oraz 5-7 letnie badania na zdrowych dzieciach, również przeprowadzone przez dentystów aby poprzeć swój argument, że “nie ma dowodów na to, że amalgamaty mają wpływ na funkcje nerek u ludzi “. Jednakże wiele badań sugeruje coś przeciwnego:

W eksperymentach na zwierzętach stwierdzono upośledzenie funkcji kanalików moczowych z powodu plomb amalgamatowych [23,146,167]. Ludzie z amalgamatami wykazują więcej objawów uszkodzenia układu moczowego niż osoby bez tych plomb [15]. Często wymieniane badanie dzieci ujawniło pierwsze oznaki uszkodenia nerek (mikroalbuminuria) [168] nawet po 5 latach od ekspozycji na amalgamaty.

Choroba Alzheimera (AD)

SCENIHR zakwestionował fakt, że rtęć może być podłożem choroby Alzheimera. Jako dowód zacytowano tylko jedne badania [41] opublikowane w periodyku wiodącej w świecie American Dental Association (ADA) [102]. Tymczasem inne badania wykazały, że rtęć odgrywa ogromną rolę w patogenezie choroby Alzheimera [108,109,169,170]. Nowa systemowa analiza literatury pod tym kątem wykazała znaczący związek [124].

Choroba Parkinsona (PD)

Metale ciężkie podejrzewane są od dawna jako podłoże PD, wiele badań pokazuje ten związek, w tym badania epidemiologiczne [171-180]. Rtęć pierwiastkowa powoduje PD [175] i w badaniach przypadku wykazano, że stan chorego wyraźnie poprawił się po terapii chelatacyjnej [173] i pozostał niepogorszony podczas kolejnego okresu 5-letniego [173]. W  innych badaniach stwierdzono znacząco podwyższone poziomy rtęci we krwi u 13 z 14 pacjentów z PD w porówaniu do grup kontrolnych [172]. To jest zgodne z wnioskiem poprzednich badań, które ujawniły związek między poziomami rtęci we krwi i PD [176]. Inne badania ujawniły znacząco wyższą ekspozycję na amalgamaty u osób z PD w porównaniu do  grup kontrolnych [179].

Efekty uboczne u personelu dentystycznego?

SCENIHR stwierdził, że “częstotliwośćzgłoszonych efektów ubocznych [u personelu dentystycznego i dentystów] jest bardzo niska”.

Prosty przegląd literatury ujawnia przeciwny wniosek: dentyści pracujący z amalgamatami mają zwiększoną ekspozycję na rtęć [17,181,182]. W większości dostępnych badań ta ekspozycja w klinikach dentystycznych powodowała znaczące efekty zdrowotne u dentystów. W niektórych badaniach, obraz kliniczny nie był skorelowany z poziomem rtęci w moczu czy krwi, więc niektórzy badacze fałszywie przyjęli, że rtęć nie była powodem tych reakcji. Jednakże, nie jest to wniosek zgodny z prawidłami nauki, gdyż poziomy rtęci w moczu oraz krwi nie odpowiadają poziomom w tkankach (patrz powyżej). Lindbohm et al. (2007) ujawnili dwukrotnie wyższe ryzyko poronień poprzez zawodową ekspozycję na rtęć (OR 2,0; 95% CI 1,0- 4,1). Ten efekt ekspozycji na rtęć był silniejszy niż efekt ekspozycji na substancje akrylowe, dezynfekujące czy rozpuszczalniki [199].

Nawet w 30 lat po ekspozycji na rtęć, pielęgniarki stomatologiczne miały znaczące problemy zdrowotne [200]. Pomimo faktu, że 85% dentystów i techników stomatologicznych wykazało zmiany odpowiadające toksyczności rtęci zarówno w parameytrach biologicznych, jak i behawioralnych, a 15% wykazało zwiększony poziom deficytów neurologicznych z polimorfizmem genu CPOX4 [186,188,201], SCENIHR wciąż utrzymuje, że amalgamaty nie powodują znaczących problemów zdrowotnych u dentystów, bo poziomy rtęci we krwi oraz moczu są poniżej „bezpiecznych limitów “.

Bezpłodność

SCENIHR stwierdził, że “Nie ma dowodu pomiędzy związkiem plomb amalgamatowych a męską lub żeńską bezpłodnością “. Jako dowód zacytowano tylko jedno badanie, które badało tylko parametry spermy u mężczyzn. Jednakże inne badania wskazują na coś przeciwnego, w szczególności w odniesieniu do kobiet:

Asystentki dentystów poddane ekspozycji na amalgamat wykazały wyższy wskaźnik bezpłodności [198]. Kobiety z dużą ilością plomb albo zwiększonym poziomem rtęci w moczu (po podaniu DMPS) miały wyższy wskaźnik bezpłodności [202-204]. Detoksykacja metali ciężkich doprowadziła do spontanicznego zachodzenia w ciążę u znacznej ilości bezpłodnych pacjentów [203]. Ekspozycja na rtęć doprowadziła do zmniejszonej płodności mężczyzn [205-207]. Studium norweskie, często cytowane jako dowód, że ekspozycja na rtęć w klinikach dentystycznych nie powoduje bezpłodności, obarczone jest metodologicznymi błędami, gdyż uwzględniono w nim tylko kobiety, które urodziły już przynajmniej jedno dziecko. Kobiety bezdzietne zostały wykluczone. Takie studium oczywiście nie może odpowiedzieć na pytanie, czy praca z amalgamatami prowadzi do bezpłodności, czy nie. Co więcej nie wyliczono czasu ekspozycji na amalgamat i nie uwzględniony on został jako zmienna w studium.

Stwardnienie rozsiane (MS)

W płynie mózgowo-rdzeniowym pacjentów z MS ujawniono 7,5 razy zwiększony poziom rtęci [208]. Ciężko nie spekulować, czy obecność rtęci w takiej ilości przynajmniej nie wpływa na zaostrzenie problemów powiązanych z MS albo inną chorobą neurologiczną. Częstotliwość MS jest skorelowana z częstotliwością próchnicy [209,210] i amalgamatów [211,212]. Kilkanaście przypadków MS spowodowane zostało ostrym zatruciem oparami rtęci czy ołowiu [213]. U zwierząt rtęć nieorganiczna spowodowała utratę komórek Schwanna, które budują osłonki mielinowe i stabilizują aksony [214]. Patogeneza autoimmunologiczna, w tym przeciwciała przeciwko podstawowemu białku mielinowemu (MBP), może być sprowokowana przez rtęć i inne metale ciężkie [148].

Pacjenci MS, u których usunięto plomby amalgamatowe, rzadziej cierpieli na depresję, agresję, było mniej zachowań psychotycznych i kompulsywnych w porównawniu do pacjentów z amalgamatami [215]. Mieli też niższe poziomy rtęci we krwi [216]. Po usunięciu amalgamatu, patologiczne prążki oligoklonalne w płynie mózgowo-rdzeniowym zniknęły u pacjentów z MS [217]. Usunięcie amalgamatów doprowadziło do wyleczenia dużej ilości pacjentów z MS [147]. Retrospektywne studium 20.000 żołnierzy wykazało znacznie większe ryzyko MS u osób z amalgamatami [218]. To ryzyko było niedoszacowane, bo grupa badawcza wybrana drogą badań medycznych składała się z osób o dobrym zdrowiu w trakcie zaciągu do wojska [218]. Inny problem pojawiający się w niektórych badaniach to brak dokumentacji dentystycznej sprzed czasu rozwoju MS. Pomimo tych ograniczeń [219] powtórna analiza ujawniła 3,9 razy większe ryzyko MS u osób z amalgamatami w porównaniu do osób  bez amalgamatów. Niedawny przegląd badań dowiódł także, że istnieje zwiększone ryzyko MS spowodowanego przez amalgamaty gdyż większość badań nie była oparta na właściwej grupie kontrolnej bez amalgamatów [220].

Stwardnienie zanikowe boczne (ALS)

SCENIHR stwierdził, że “nie ma dowodu pomiędzy ALS a rtęcią “.

W przeciwieństwie do tego twierdzenia, wiele badań sugeruje, że rtęć może odgrywać rolę w patogenezie ALS:

Opary rtęci są absorbowane przez neurony motoryczne [221] co prowadzi do zwiększonego stresu oksydacyjnego. W eksperymentach wykazano, że opary rtęci powodują choroby neuronów motorycznych, takie jak [222-226]. Udowodniono, że rtęć zwiększa toksyczność glutaminianu, która jest czynnikiem przy ALS. Badania przypadków wykazały korelację pomiędzy przypadkową ekspozycją na rtęć a ALS [227,228]. Doniesiono o przypadku Szwedki, która miała ponad 34 amalgamaty i cierpiała na ALS. Po usunięciu tych plomb, wyzdrowiała [229]. Retrospektywne stadium ujawniło statystycznie znaczący związek między większą ilością amalgamatów i ryzykiem chorób neuronów motorycznych [218].

“Choroba amalgamatowa” i wskaźniki wrażliwości

Pomiędzy najczęściej zgłaszanymi objawami choroby amalgamatowej są: chroniczne zmęczenie, bole głowy, migreny, zwiększona podatność na infekcje, ból mięśni, brak koncentracji, zaburzenia trawienia, zaburzenia snu, słaba pamięć, bóle stawów, depresje, zaburzenia pracy serca, rozregulowanie układu wegetatywnego, zaburzenia nastroju i inne [161,215,216,230-234].

Do niedawna nie było możliwe rozróżnienie pomiędzy osobami „wrażliwymi na amalgamaty” i „odpornymi na amalgamaty” poprzez zmierzenie poziomów rtęci w ich krwi czy moczu albo testy skórne [9,21]. Jednakże udowodniono, że niektóre osoby mogą reagować na test skórny zaburzeniami psychopatycznymi, chociaż nie było alergicznej reakcji na skórze [235]. Dodatkowo granulocyty neutrofilowe u osób podatnych na amalgamaty reagowały inaczej niż u osób odpornych [236], jak również ujawniono różną aktywność dysmutazy nadtlenkowej [237].

Zwiększona podatnośc na rtęć i amalgamaty

SCENIHR nie wspomniał o parametrach podatności, które sprawiają, że pewna część populacji jest wrażliwa na rtęć z amalgamatów:

a) Odchylone od normy profile porfirynowe spowodowane ekspozycją na rtęć

Wiadomo, że rtęć prowadzi do odchylonych od normy profile porfirynowych w moczu u dentystów [238] i dzieci z autyzmem, a te odchylenia zostały odwrócone po chelatowaniu dzieci [239-241].

Genetyczny polimorfizm koproporfirynoksydazy (CPOX4) [188,201] prowadzi do zwiększonej podatności na rtęć i do zwiększonego ryzyka problemów neurobehawioralnych [242].

Najistotniejsza kwestia to efekt ekspozycji na opary rtęci na profile porfirynowe w mózgu, gdyż odchylenie od normy w przypadku hemu w mózgu jest powiązan z niemożliwością usunięcia protein beta-amyloidalnych z komórek mózgu, co może doprowadzić do choroby Alzheimera [243].

Należy wspomnieć, że porfiryny prowadzą do hemu, który jest kluczowy dla licznych mechanizmów biochemicznych: (i) jest kofaktorem dostarczającym tlen do hemoglobiny, (ii) jest kluczowym kofaktorem dla enzymów klasy P450 odpowiedzialnych za detoksykację ksenobiotyków z organizmu, (iii) jest niezbędnym kofaktorem dla jednego z kompleksów transportujących elektrony w mitochondriach i syntezy ATP.

Dlatego zahamowanie produkcji hemu przez rtęć może mieć dalej idące efekty powodujące różne choroby i zaburzenia.

Pomimo faktu, że 85% dentystów i techników stomatologicznych wykazało zmiany odpowiadające toksyczności rtęci zarówno w parameytrach biologicznych, jak i behawioralnych, a 15% wykazało zwiększony poziom deficytów neurologicznych z polimorfizmem genu CPOX4, organizacje stomatologiczne i SCENIHR wciąż utrzymują, że amalgamaty nie powodują żadnych znaczących problemów medycznych, bo poziomy rtęci w moczu oraz krwi są poniżej limitów bezpieczeństwa.

b) Pochodzący z mózgu czynnik neutroficzny

Inny polimorfizm genetyczny pochodzącego z mózgu czynnika neutroficznego (brain derived neurotrophic factor  - BNDF) zwiększa również podatność na ekspozycję na rtęć na niskich poziomach [186,187].

c) Zróżnicowane apolipoproteiny E

Wykazano, że osoby wrażliwe na amalgamaty częściej są nosicielami alleli apolipoproteiny E4 (APO-E4) niż osoby bez objawów i rzadziej są nosicielami APO-E2 [231,234]. APO-E4 to znany duży czynnik ryzyka przy chorobie Alzheimera, a APO-E2 zmniejsza to ryzyko. Postuluje się, że jest tak z powodu różnicy w możliwości usuwania metali ciężkich z płynu mózgowo-rdzeniowego [44,92,102,124,231,234,244]. APO-E2 posiada dwie cysteiny z wiążącymi metale grupami sulfhydrylowymi, a APO-E4 nie składa się z cysteiny.

d) Metabolizm glutationu

Zredukowany glutation (GSH) to główny naturalny chelator metali ciężkich z uwagi na fakt, że zawiera cysteinę zawierającą sulfhydryl. Tylko rtęć, która wiąże się z glutationem (lub selenem), może opuścić ciało poprzez wydalanie z moczem albo kałem. Wysoki poziom glutationu jest dlatego niezbędny przy metabolizmie rtęci. Opisano, że polimorfizmy w genach prowadziły do obniżonej produkcji GSH i powodowały większą retencję rtęci organicznej i nieorganicznej w organizmie. Inne czynniki, które mogą zwiększać podatność na małe dawki rtęci to np niski poziom selenu, niewłaściwa reakcja granulocytów neutrofilowych, aktywność dysmutazy nadtlenkowej, syntetaza metioninowa pozytywna względem receptoru D4 i upośledzone ścieżki metylacyjne (około 15% populacji), prowadzą do zmniejszenia substancji chroniących przed rtęcią, jak S-adenyl-metionina, cysteina, GSH i metalotionina [44,245-247].

Poprawa po usunięciu plomb amalgamatowych

Znacząca poprawa zdrowia i ww. chorób (w tym stwardnienia rozsianego i innych chorób autoimmunologicznych) miała miejsce po usunięciu plomb amalgamatowych (w wielu badaniach przedsięwzięto środki ochronne minimalizujące ekspozycję na rtęć) [68,147,149,150,159,161,217,230,233,234,248-251].

Nie ma zaburzeń neurorozwojowych spowodowanych przez rtęć?

SCENIHR stwierdził, że “nie ma dowodu związku przyczynowego pomiędzy plombami amalgamatowymi a autyzmem ” i “… nie ustalono żadnego powiązania między szczepionkami, tiomersalem i autyzmem “.

Niezależnie od tego autorzy doszli do przeciwnych wniosków:

“…ekspozycja na rtęć zmieniła ilość komórek i ich podział; jest to postulowane jako możliwe podłoże zaobserwowanych niekorzystnych efektów w rozwoju neuronów. Potencjalne implikacje takich obserwacji są oczywistem gdy ocenia się je w kontekście badań, które wykazały, że zmieniona proliferacja komórek i efekty neuropatologiczne są powiązane ze specyficznymi deficytami neurobehawioralnymi (np. autyzmem).” [252]

Cheuk and Wong (2006) u pacjentów zdiagnozowanych z ADHD oraz Desoto i Hitlan (2007) u pacjentów zdiagnozowanych z ASD ustalili znacznie wyższy poziom rtęci we krwi w porównaniu do grupy kontrolnej [253,254]. Adams et al. (2007) zaobserwowali znaczący wzrost poziomów rtęci u ząbków mlecznych dzieci z autyzmem w porównaniu z grupą kontrolną [255]. Rtęć w ząbkach mlecznych odzwierciedla ekspozycję na rtęć w łonie matki.

Ostatnie badania patologiczne mózgu ujawniły podwyższone poziomy rtęci i związany z tym stress oksydacyjny u pacjentów z autyzmem. Poziomy rtęci w moczu dzieci z autyzmem były zwiększone 3-5 krotnie po podaniu DMSA w porównaniu do dzieci zdrowych [259]. Dzieci autystyczne wydalają też większe stężenia koproporfiryny, co jest specyficzne dla zatrucia rtęcią [239,240,260,261]. Detoksykacja rtęci przy wykorzystaniu DMSA normalizuje te poziomy koproporfiryny u dzieci z autyzmem [239,240] i prowadzi do poprawy objawów [262]. Dodatkowo badania ekserymentalne i epidemiologiczne wykazały, że ekspozycja na rtęć jest odpowiedzialna za autyzm albo za pogarszanie się zaburzeń. Prenatalna ekspozycja na amalgamaty u matki [46,263], tiomersal przyjmowany przez matkę [46,264] i źródła po urodzeniu (rtęć ze szczepionek) w połączeniu z genetyczną podatnością mogą uruchomić autyzm. W eksperymentach na zwierzętach, wstrzyknięcie tiomersalu powodowało objawy podobne do autystycznych [265]. Studia epidemiologiczne potwierdzajmą znaczący związek między ekspozycją na niskie dawki rtęci i zaburzeina neurorozwojowe [266][267][268][269][270][271]. Dzieci z autyzmem mają niższe poziomy glutationu [272]; wiadomo że może to spowodować rtęć [273]. W niektórych wstępnych studiach poświęconych chelatacji dowiedziono, że prowadzi ona do poprawy stanu dziecka [263]. Autism Research Institute wymienia dlatego chelatację jako najbardziej skuteczną terapię pomiędzy 88 terapiami, w tym 53 opartymi na lekach [274].

Zahir et al. (2005) opisuje dostęp rtęci

“…do człowieka przez różne drogi; powietrze, wodę, pożywienie, kosmetyki i nawet szczepionki, co zwiększa ekspozycję. Płody i noworodki są bardziej podatne na toksyczność rtęci. Matki przyjmujące rtęćw pożywieniu przekazują ją dzieciom przez mleko z piersi. U dzieci narażonych na ekspozycję na niby bezpieczne poziomy rtęci ujawniono zmniejszone umiejętności motoryczne i gorszą pamięć [...] Rtęć jest powodem różnych zaburzeń, neurologicznych, nefrologicznych, immunologicznych, krążeniowych, ruchowych, rozrodczych a nawet genetycznych. Ostatnio toksyczność rtęci wiąże się z chorobą Alzheimera, Parkinsona, autyzmem, toczniem, ALS itp.”[275].

Niektóre badania, które nie potwierdziły związku między rtęcią a autyzmem, mają poważne błędy metodyczne [245].

Poważne błędy metodyczne w badaniach cytowanych przez SCENIHR jako dowód na bezpieczeństwo amalgamatów

Aby przestudiować efekt toksyczny, należy porównać przynajmniej dwie próbki: poddaną ekspozycji na substancję i taką, która nie została jej poddana. Głównym problemem w wielu badaniach nad amalgamatami jest to, że większość nie opiera się na prawdziwej grupie roboczej, która nigdy nie była narażona na ekspozycję na amalgamaty, Nawet porównanie próbek osób z plombami oraz bez plomb, próbka osoby bez plomb mogła być poddana ekspozycji na amalgamaty we wcześniejszym okresie życia. Studia często cytowane nie tylko przez SCENIHR jako dowód nieszkodliwości amalgamatów nie brały pod uwagę właściwych grup kontrolnych. Można opisać następujący przykład:

Szwedzkie badania nad bliźniętami [276] porównały w zasadzie 57 par bliźniąt a nie 587 jak opisują autorzy i różne instytucje rządowe. Średni wiek próbki wynosił 66 lat, w trakcie badania 25% nie miało już zębów, u wielu osób były braki w uzębieniu, a nieokreślona ilość miała koronki. Nie oszacowano w ilu przypadkach, wypełniono amalgamatem korzenie pod koronkami i czy znajdowały się pod nimi jakieś plomby amalgamatowe. Te osoby jako rzekomą grupę „bez amalgamatów” porównano z tymi, które miały aktualnie plomby amalgamatowe. Autorzy ustalili, że osoby z plombami amalgamatowymi (a zatem mające więcej własnych zębów) mają lepszy stan zdrowia. Należy przypuszczać, że osoby bez zębów albo z niewieloma zębami albo zębami naprawianymi koronkami czy mostkami już wcześniej były poddane ekspozycji na rtęć z amalgamatów. Jako, że rtęć kumuluje się w tkankach ciała ta grupa „bez amalgamatów” mogła mieć większe obciążenie niż grupa z aktualnie istniejącymi amalgamatami.

SCENIHR zacytował też Zimmera et al. (2002) jako dowód bezpieczeństwa amalgamatów. Ale te badania porównały dwie grupy poddane ekspozycji na amalgamaty (same kobiety, jedna grupa cierpiała na objawy, które wiązała z amalgamatami a druga nie zgłaszała związku między swoimi schorzeniami i amalgamatami) w sensie poziomów rtęci w płynach ciała i testów psychometrycznych. Średnia ilość plomb amalgamatowych była identyczna w obu grupach. Zimmer et al. (p. 210) dochodzą do wniosku: “Z tego powodu rtęć uwalniana z plomb amalgamatowych nie była prawdopodobną przyczyną zaburzeń zgłaszanych przez osoby wrażliwe na rtęć ” [21]. Nie jest jasne, jak ci autorzy doszli do takiego wniosku. Co więcej wiadomo z eksperymentów na zwierzętach i studiów farmakologicznych że osoby, którym podano równą dawkę toksyny mogą różnie zareagować. Przykładem jest to, że nie każdy palacz rozwija u siebie raka płuc, chociaż palenie jest przyjmowane jako główna przyczyna raka.

“Próby amalgamatowe u dzieci”

SCENIHR oparł swoje twierdzenia o bezpieczeństwie amalgamatów również na dwóch próbach u dzieci. Te badania mają szereg poważnych błędów metodologicznych:

W dwóch randomizowanych próbach na dzieciach oszacowano, czy amalgamaty prowadizły do pogorszenia neuropsychologicznego lub funkcji nerek [277,278]. Zdrowym dzieciom losowo umieszczono amalgamaty albo plomby kompozytowe. Dwoje dzieci w grupie z amalgamatami zmarło (jedno prawdopodobnie popełniło samobójstwo) I zostało wykluczonych z badań.

Wyliczenie (ilość efektów ubocznych minus brak takich efektów) wskazuje, że zaburzenia psychologiczne, które występowały u 6.7% dzieci z plombami kompozytowymi, musiałyby wystąpić przynajmniej u 14.5% dzieci z amalgamatami aby było 80% szans, że zostaną statystycznie udowodnione (zaobserwowano 9.0%). Podobnie schorzenia neurologiczne, zaobserwowana częstotliwość w grupie z plombami kompozytowymi (0.4% kompozyty, 1.5% amalgamaty) musiałyby wystąpić przynajmniej u 4.5% dzieci z amalgamatami, aby był to efekt znaczący. Autorzy doszli do wniosku, że “nie ma powodu zaprzestawać używania amalgamatów ” [277] i że “amalgamaty [...] emitują małe ilości oparów rtęci ” [278].

Pierwszy wniosek to klasyczny błąd: z uwagi na małą grupę, studium doprowadziło do fałszywego wniosku, że amalgamaty są bezpieczne. Aby skutecznie zewaluować taki rozmiar efektów ubocznych, grupa powinna być o wiele większa (1500-2500/na grupę).

Nie zmierzono porfiryn w moczu i markerów stresu oksydacyjnego, które są podwyższone u osób z amalgamatami [19,119]. Nadto genetyczne polimorfizmy, które zwiększają podatność na rtęć, jak polimorfizm BDNF [186,188] i genu GST [279] również nie zostały zmierzone. Co więcej, właściwa ekspozycja na rtęć (opary emitowane w jamie ustnej) nie została oszacowana, co kwestionuje etykę tych badań. Badania wykazały, że emisja oparów rtęci była o wiele wyższa niż oszacowana przez dentystów. Chew et al. (1991) wykazali, że 43.5 mikrogramów/cm2/dzień rtęci było wydzielanych z “amalgamatów rzekomo nie wydzielających rtęci” I ilość ta pozostała nzmieniona przez 2 lata badań [280].

Średnie poziomy rtęci w moczu były znacząco wyższe w grupie z amalgamatami [277,278], chociaż w latach 3 do 7 poziomy rtęci w moczu u osób z amalgamatami zaczęły spadać aż doszły do poziomu u dzieci bez amalgamatów [278]. Ale w latach 6 i 7 przeprowadzono leczenie zachowawcze, które powinno było zwiększyć albo przynajmniej utrzymać te same poziomy  rtęci w moczu. To wymaga wyjaśnienia. W badaniach Chewa [280], ilość rtęci wypuszczanej z amalgamatów była stała przez 2 lata (okres badawczy). Wiadomo, że amalgamaty nie przestają wypuszczać rtęci w ciągu 7 lat. Powstaje pytanie, czym spowodowany był spadek po roku drugim? Poziomy rtęci w moczu określają ilość rtęci wydalanej tą drogą. Dlatego po dwóch latach ekspozycji na rtęć wydalanie przez nerki jest mniej efektywne. Jest to spójne ze znanym faktem, ze zwiększona ekspozycja na rtęć uniemożliwia jej wydalanie. Opublikowano i zweryfikowano, że ponad 90% rtęci wydalanej jest przez ludzi z żółcią w wątrobie i dalej w kale, a nie w moczu [13]. Wniosek Bellingera et al. [277] brzmi “nie ma powodu zaprzestać użycia rtęci ” i jest zadziwiający, bo możliwe efekty uboczne mogą się pojawić po dłuższym okresie niż 5 lat. Jeśli rtęć ma wpływ na patogenezę choroby Alzheimera, to może minąć 50 lat zanim rozpozna się klinicznie chorobę [44].

Jednym z kryteriów obydwu badań było “brak innych efektów zdrowotnych” w tym zaburzeń neurorozwojowych. Centrum Chorób Zakaźnych i Prewencji (CDC) w Atlancie (USA) donosi, że 1 na 6 dzieci amerykańskich ma zaburzenia neurorozwojowe. Niezależnie od tego, obydwa wymienione badania prezentują wnioski, że amalgamaty powinny pozostać odstępną opcją w opiece dentystycznej [278] i nie wyłączają dzieci z zaburzeniami rozwojowymi od stosowania amalgamatów – chociaż ten typ dzieci wyłączono z badań. Jako, że ekspozycja na rtęć podczas ciąży może być główną przyczyną zaburzeń neurorozwojowych [46,61,245], taki wniosek odnośnie amalgamatów u dzieci jest niebezpieczny dla społeczeństwa.

Amalgamaty a zanieczyszczenie rtęcią

W ciągu ostatnich dziesięcioleci odnotowano alarmujący wzrost rtęci w środowisku [281] i ciałach ludzi [282]. UNEP donosi o 305 krotnym wzroście przez ostatnie 25 lat [281].

W Unii Europejskiej używa się 120 ton amalgamatu rocznie. Drugą największą grupą użytkowników w Unii są dentyści [283,284].

Ostatnie wyliczenia Hylandera [284,285] wykazały, że w zębach Szwedów znajduje się 40 ton rtęci w amalgamatach, co powoduje wydalanie 100 kg rtęci rocznie ze ściekami. 1300 do 2200 ton rtęci w amalgamatach znajduje się w zębach obywateli UE (27 krajów) [284], a dla USA liczba ta wynosi około 1000 ton. W USA amalgamaty to trzecie największe źródło rtęci w środowisku [286]. W przeciwieństwie do UE usunięte amalgamaty nie są oddzielone od odpadów kanalizacyjnych w klinikach w USA. Ale nawet w UE, gdzie oddziela się je w ten sposób, część amalgamatu dostaje się do środowiska [284].

Ta rtęć z amalgamatów (np. emisje rtęci z klinik do ścieków, wydzielona rtęć z amalgamatów u żyjących osób, rtęć wydzielana z amalgamatów osób zmarłych pochowanych i podczas ich kremacji) wchodzi do środowiska. Włączając koszty środowiskowe do kalkulacji ekonomicznej (bez kosztów chorób spowodowanych przez amalgamaty), amalgamaty są najbardziej kosztownym materiałem dentystycznym, czego dowiedli Hylander i Godsite [283].

Rola organizacji dentystycznych w SCENIHR i w obronie amalgamatów

Grupa ekspercka SCENIHR zajmująca się amalgamatami składała się z inżyniera (przewodniczący), czterech dentystów, toksykologa i dwóch weterynarzy. Przewodniczący ma ścisły kontakt z przemysłem. Nie zaproszono ekspertów z zakresu medycyny czy medycyny środowiskowej. Należy się zastanowić, dlaczego dentyści byli tak silnie reprezentowani w SCENIHR.

Z powodu swojego wykształcenia i doświadczenia klinicznego dentyści nie są zdolni do oceny medycznych systemowych efektów ubocznych spowodowanych przez amalgamaty, jak stwardnienie rozsiane, autyzm, choroby autoimmunologiczne, choroba Alzheimera, choroby psychiczne itp. Wykorzystanie amalgamatów zwiększa się na całym świecie (zwiększająca się epidemia próchnicy w krajach nierozwiniętych, w których mieszka największy odsetek populacji). Dzisiaj organizacje stomatologiczne to jedyna grupa pracowników służby zdrowia, którzy promują product złożony głównie z rtęci. Każdy patent amalgamatowy został wyprodukowany zgodnie ze specyfikacjami organizacji dentystycznych [287,288]. Może być to istotny element, gdyż organizacje dentystyczne, które zawsze wspierały wykorzystanie amalgamatów, są odpowiedzialne na efekty uboczne [287,288]. Dlatego ich strategie polegały na wpływaniu na naukowców i polityków przez ostatnie dekady [287-290] i są analogiczne do innych dobrze znanych tematów, gdzie istnieją konflikty interesów, a skuteczne środki zostały zastosowane w ceu wpłynięcia na naukowców i polityków w odniesieniu do niebezpiecznych produktów [291-295].

Interesy konkurencyjne

Autor deklaruje, że nie prowadzi konkurencyjnych interesów.

Bibliografia

  1. Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR): The safety of dental amalgam and alternative dental restoration materials for patients and users. [http:/ / ec.europa.eu/ health/ ph_risk/ committees/ 04_scenihr/ docs/ scenihr_o_016.pdf] webciteEuropaen Commision 2008, 1-74. OpenURL
  2. Barregard J, Svalander C, Schutz A, Westberg G, Sällsten G, Blohmé I, Mölne J, Attman PO, Haglind P: Cadmium, mercury, and lead in kidney cortex of the general Swedish population: a study of biopsies from living kidney donors. Environ Health Perspect 1999, 107:867-871. PubMed Abstract | PubMed Central Full Text OpenURL
  3. Becker K, Kaus S, Krause C, Lepom P, Schulz C, Seiwert M, Seifert B: German Environmental Survey 1998 (GerES lll): environmental pollutants in blood of the German population. Int J Hyg Environ Health 2002, 205:297-308. PubMed Abstract | Publisher Full Text OpenURL
  4. Becker K, Schulz C, Kaus S, Seiwert M, Seifert B: German Environmental Survey 1998 (GerES III): Environmental pollutants in the urine of the German population. Int J Hyg Environ Health 2003, 206:15-24. PubMed Abstract | Publisher Full Text OpenURL
  5. Drasch G, Schupp I, Riedl G, Günther G: Einfluß von Amalgamfüllungen auf die Quecksilberkonzentration in menschlichen Organen. Dtsch Zahnärztl Z 1992, 47:490-496. OpenURL
  6. Drasch G, Schupp I, Hofl H, Reinke R, Roider G: Mercury burden of human fetal and infant tissues. Eur J Ped 1994, 153:607-610. Publisher Full Text OpenURL
  7. Drasch G, Wanghofer E, Roider G: Are blood, urine, hair, and muscle valid bio-monitoring parameters for the internal burden of men with the heavy metals mercury, lead and cadmium? Trace Elem Electrolyt 1997, 14:116-123. OpenURL
  8. Eggleston DW, Nylander M: Correlation of dental amalgam with mercury in brain tissue. J Prosth Dent 1987, 58:704-707. Publisher Full Text OpenURL
  9. Gottwald B, Traencker I, Kupfer J, Ganss C, Eis D, Schill WB, Gieler U: “Amalgam disease” — poisoning, allergy, or psychic disorder? Int J Hyg Environ Health 2001, 204:223-229. PubMed Abstract | Publisher Full Text OpenURL
  10. Guzzi G, Grandi M, Cattaneo C: Should amalgam fillings be removed? Lancet 2002, 360:2081. PubMed Abstract | Publisher Full Text OpenURL
  11. Guzzi G, Grandi M, Cattaneo C, Calza S, Minoia C, Ronchi A, Gatti A, Severi G: Dental amalgam and mercury levels in autopsy tissues: food for thought. Am J Forensic Med Pathol 2006, 27:42-45. PubMed Abstract | Publisher Full Text OpenURL
  12. Levy M, Schwartz S, Dijak M, Weber JP, Tardif R, Rouah F: Childhood urine mercury excretion: dental amalgam and fish consumption as exposure factors. Environ Res 2004, 94:283-290. PubMed Abstract | Publisher Full Text OpenURL
  13. Lorscheider FL, Vimy MJ, Summers AO: Mercury exposure from “silver” tooth fillings: emerging evidence questions a traditional dental paradigm. FASEB Journal 1995, 9:504-508. PubMed Abstract | Publisher Full Text OpenURL
  14. Kingman A, Albertini T, Brown LJ: Mercury concentrations in urine and whole blood associated with amalgam exposure in a US military population. J Dent Res 1998, 77:461-471. PubMed Abstract | Publisher Full Text OpenURL
  15. Mortada WI, Sobh MA, El-Defrawy MM, Farahat SE: Mercury in dental restoration: is there a risk of nephrotoxicity? J Nephrol 2002, 15:171-176. PubMed Abstract OpenURL
  16. Nylander M: Mercury in pituitary glands of dentists. Lancet 1986, 22:442. Publisher Full Text OpenURL
  17. Nylander M, Weiner J: Mercury and selenium concentrations and their interrelations in organs from dental staff and the general population. Br J Ind Med 1991, 48:729-734. PubMed Abstract | PubMed Central Full Text OpenURL
  18. Nylander M, Friberg L, Lind B: Mercury concentrations in the human brain and kidneys in relation to exposure from dental amalgam fillings. Swed Dent J 1987, 11:179-187. PubMed Abstract OpenURL
  19. Pizzichini M, Fonzi M, Giannerini M, Mencarelli M, Gasparoni A, Rocchi G, Kaitsas V, Fonzi L: Influence of amalgam fillings on Hg levels and total antioxidant activity in plasma of healthy donors. Sci Total Environ 2003, 301:43-50. PubMed Abstract | Publisher Full Text OpenURL
  20. Weiner JA, Nylander M: The relationship between mercury concentration in human organs and different predictor variables. Sci Tot Environ 1993, 138:101-115. Publisher Full Text OpenURL
  21. Zimmer H, Ludwig H, Bader M: Determination of mercury in blood, urine and saliva for the biological monitoring of an exposure from amalgam fillings in a group with self-reported adverse health effects. Int J Hyg Environ Health 2002, 205:205-211. PubMed Abstract | Publisher Full Text OpenURL
  22. Danscher G, Hørsted-Bindsley P, Rungby J: Traces of mercury in organs from primates with amalgam fillings. Exp Mol Pathol 1990, 52:291-299. PubMed Abstract | Publisher Full Text OpenURL
  23. Galic N, Prpic-Mehicic G, Prester LJ, Blanusa M, Krnic Z, Ferencic Z: Dental amalgam mercury exposure in rats. Biometals 1999, 12:227-237. PubMed Abstract | Publisher Full Text OpenURL
  24. Galic N, Prpic-Mehicic G, Prester LB, Krnic Z, Blanusa M, Erceg D: Elimination of mercury from amalgam in rats. J Trace Elem Med Biol 2001, 15:1-4. PubMed Abstract | Publisher Full Text OpenURL
  25. Hahn LJ, Kloiber R, Vimy MJ, Takahashi Y, Lorscheider FL: Dental “silver” tooth fillings: a source of mercury exposure revealed by whole-body image scan and tissue analysis. FASEB Journal 1989, 3:2641-2646. PubMed Abstract | Publisher Full Text OpenURL
  26. Hahn LJ, Kloiber R, Leininger RW, Vimy M, Lorscheider FL: Whole-body imaging of the distribution of mercury released from dental fillings into monkey tissues. FASEB Journal 1990, 4:3256-3260. PubMed Abstract OpenURL
  27. Lorscheider FL, Vimy MJ: Mercury exposure from “silver” fillings. Lancet 1991, 337:1103. PubMed Abstract | Publisher Full Text OpenURL
  28. Vimy MJ, Takahashi Y, Lorscheider FL: Maternal-fetal distribution of mercury (203 Hg) released from dental amalgam fillings. Am J Physiol 1990, 258:939-945. OpenURL
  29. Heintze U, Edwardsson S, Derand T, Birkhed D: Methylation of mercury from dental amalgam and mercuric chloride by oral streptococci in vitro. Scand J Dent Re 1983, 91:150-152. OpenURL
  30. Leistevuo J, Leistevuo T, Helenius H, Pyy L, Osterblad M, Huovinen P, Tenovuo J: Dental amalgam fillings and the amount of organic mercury in human saliva. Caries Res 2001, 35:163-166. PubMed Abstract | Publisher Full Text OpenURL
  31. Yannai S, Berdicevsky I, Duek L: Transformations of inorganic mercury by Candida albicans and Saccharomyces cerevisiae. Appl Environ Microbiol 1991, 57:245-247. PubMed Abstract | PubMed Central Full Text OpenURL
  32. Leong CCW, Syed NI, Lorscheider FL: Retrograde degeneration of neurite membrane structural integrity of nerve growth cones following in vitro exposure to mercury. Neuro Report 2001, 12:733-737. OpenURL
  33. Olivieri G, Brack C, Muller-Spahn F, Stähelin HB, Herrmann M, Renard P, Brockhaus M, Hock C: Mercury induces cell cytotoxicity and oxidative stress and increases beta-amyloid secretion and tau phosphorylation in SHSY5Y neuroblastoma cells. J Neurochem 2000, 71:231-236. OpenURL
  34. Olivieri G, Novakovic M, Savaskan E, Meier F, Baysang G, Brockhaus M, Müller-Spahn F: The effects of ß-Estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and ß-Amyloid secretion. Neuroscience 2002, 113:849-855. PubMed Abstract | Publisher Full Text OpenURL
  35. Pendergrass JC, Haley BE: Mercury-EDTA Complex Specifically Blocks Brain-Tubulin-GTP Interactions: Similarity to Observations in Alzheimer’s Disease. In Status Quo and Perspective of Amalgam and Other Dental Materials. International Symposium Proceedings. Edited by Friberg LT, Schrauzer GN. Stuttgart: Thieme Verlag; 1995:98-105. OpenURL
  36. Pendergrass JC, Haley BE: Inhibition of brain tubulin-guanosine 5′-triphosphate interactions by mercury: similarity to observations in Alzheimer’s diseased brain. In MetalIons on Biological systems. Edited by Sigel A, Sigel H. New York: Dekker; 1997:461-478. OpenURL
  37. Björkman L, Lundekvam BF, Laegreid T: Mercury in human brain, blood, muscle and toenails in relation to exposure: an autopsy study. Environ Health 2007, 11:6:30. OpenURL
  38. Wenstrup D, Ehmann WD, Markesbery WR: Trace element imbalances in isolated subcellular fractions of Alzheimer’s disease brains. Brain Research 1990, 533:125-31. PubMed Abstract | Publisher Full Text OpenURL
  39. Ehmann WD, Markesbery WR, Alauddin M, Hossain TIM, Brubakern EH: Brain trace elements in Alzheimer’s disease. Neurotoxicology 1986, 7:197-206. PubMed Abstract OpenURL
  40. Thompson CM, Markesbery WR, Ehmann WD, Mao YX, Vance DE: Regional brain trace-element studies in Alzheimer’s disease. Neurotoxicology 1988, 9:1-8. PubMed Abstract OpenURL
  41. Saxe SR, Wekstein MW, Kryscio RJ, Henry RG, Cornett CR, Snowdon DA, Grant FT, Schmitt FA, Donegan SJ, Wekstein DR, Ehmann WD, Markesbery WR: Alzheimer’s disease, dental amalgam and mercury. J Am Dent Ass 1999, 130:191-199. PubMed Abstract | Publisher Full Text OpenURL
  42. Cornett CR, Ehmann WD, Wekstein DR, Markesbery WR: Trace elements in Alzheimer’s disease pituitary glands. Biol Trace Element Res 1998, 62:107-114. Publisher Full Text OpenURL
  43. Braak H: Neuroanatomy of Alzheimer’s disease. Alzheimer’s Disease Review 1997, 3:235-47. OpenURL
  44. Mutter J, Naumann J, Sadaghiani C, Schneider R, Walach H: Alzheimer Disease: Mercury as a pathogenic factor and apolipoprotein E as a moderator. Neuro Endocrinol Lett 2004, 25:275-283. OpenURL
  45. Ask K, Akesson A, Berglund M, Vahter M: Inorganic mercury and methylmercury in placentas of Swedish women. Environ Health Perspect 2002, 110:523-526. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  46. Holmes AS, Blaxill MF, Haley BE: Reduced levels of mercury in first baby haircuts of autistic children. Int J Toxicol 2003, 22:277-85. PubMed Abstract | Publisher Full Text OpenURL
  47. Morgan DL, Chanda SM, Price HC, Fernando R, Liu J, Brambila E, O’Connor RW, Beliles RP, Barone S Jr: Disposition of inhaled mercury vapor in pregnant rats: maternal toxicity and effects on developmental outcome. Toxicol Sci 2002, 66:261-273. PubMed Abstract | Publisher Full Text OpenURL
  48. Takahashi Y, Tsuruta S, Hasegawa J, Kameyama Y, Yoshida M: Release of mercury from dental amalgam fillings in pregnant rats and distribution of mercury in maternal and fetal tissues. Toxicology 2001, 163:115-126. PubMed Abstract | Publisher Full Text OpenURL
  49. Takahashi Y, Tsuruta S, Arimoto M, Tanaka H, Yoshida M: Placental transfer of mercury in pregnant rats which received dental amalgam restorations. Toxicology 2003, 185:23-33. PubMed Abstract | Publisher Full Text OpenURL
  50. Vahter M, Akesson A, Lind B, Bjors U, Schutz A, Berglund F: Longitudinal study of methylmercury and inorganic mercury in blood and urin of pregnant and lactating women, as well as in umbilical cord blood. Environ Res 2000, 84:186-194. PubMed Abstract | Publisher Full Text OpenURL
  51. Yoshida M, Satoh M, Shimada A, Yamamoto E, Yasutake A, Tohyama C: Maternal-to-fetus transfer of mercury in metallothionein-null pregnant mice after exposure to mercury vapor. Toxicology 2002, 175:215-222. PubMed Abstract | Publisher Full Text OpenURL
  52. Yoshida M, Watanabe C, Satoh M, Yasutake A, Sawada M, Ohtsuka Y, Akama Y, Tohyama C: Susceptibility of Metallothionein-Null Mice to the Behavioural Alterations Caused by Exposure to Mercury Vapour at Human-Relevant Concentration. Toxicol Sci 2004, 80:69-73. PubMed Abstract | Publisher Full Text OpenURL
  53. Luglie PF, Campus G, Chessa G, Spano G, Capobianco G, Fadda GM, Dessole S: Effect of amalgam fillings on the mercury concentration in human amniotic fluid. Arch Gynecol Obstet 2005, 271:138-142. PubMed Abstract | Publisher Full Text OpenURL
  54. Drasch G, Aigner S, Roider G, Staiger F, Lipowskyn G: Mercury in human colostrum and early breast milk. Its dependence on dental amalgam and other factors. J Trace Elem Med Biol 1998, 12:23-27. PubMed Abstract OpenURL
  55. Oskarsson A, Schultz A, Skerfving S, Hallen IP, Ohlin B, Lagerkvist BJ: Total and inorganic mercury in breast milk in relation to fish consumption and amalgam in lactating women. Arch Environ Health 1996, 51:234-241. PubMed Abstract | Publisher Full Text OpenURL
  56. Vimy MJ, Hooper DE, King WW, Lorscheider FL: Mercury from maternal “silver” tooth fillings in sheep and human breast milk. A source of neonatal exposure. Biol Trace Element Res 1997, 56:143-152. Publisher Full Text OpenURL
  57. Waly M, Olteanu H, Banerjee R, Choi SW, Mason JB, Parker BS, Sukumar S, Shim S, Sharma A, Benzecry JM, Power-Charnitsky VA, Deth RC: Activation of methionine synthase by insulin-like growth factor and dopamine: a target for neurodevelopmental toxins and thimerosal. Mol Psychiatry 2004, 9:358-370. PubMed Abstract | Publisher Full Text OpenURL
  58. Deth RC: Truth revealed: New scientific discoveries regarding mercury in medicine and autism. Congression Testimony before the US House of Representatives. Subcommittee in human rights and wellness 2004. OpenURL
  59. Palkovicova L, Ursinyova M, Masanova V, Yu Z, Hertz-Picciotto I: Maternal amalgam dental fillings as the source of mercury exposure in developing fetus and newborn. J Expo Sci Environ Epidemiol 2008, 18(Suppl 3):326-331. PubMed Abstract | Publisher Full Text OpenURL
  60. Unuvar E, Ahmadov H, Kiziler AR: Mercury levels in cord blood and meconium of healthy newborns and venous blood of their mothers: Clinical, prospective cohort study. Sci Total Environ 2007, 374(Suppl 1):60-70. PubMed Abstract | Publisher Full Text OpenURL
  61. Jedrychowski W, Jankowski J, Flak E, Skarupa A, Mroz E, Sochacka-Tatara E, Lisowska-Miszczyk I, Szpanowska-Wohn A, Rauh V, Skolicki Z, Kaim I, Perera F: Effects of prenatal exposure to mercury on cognitive and psychomotor function in one-year-old infants: epidemiologic cohort study in Poland. Ann Epidemiol 2006, 16:439-447. PubMed Abstract | Publisher Full Text OpenURL
  62. Stoz F, Aicham P, Jovanovic S, Steuer W, Mayer R: Ist ein generelles Amalgam-Verbot gerechtfertigt? [Is a generalized amalgam banning appropriate?]. Z Geburtsh Neonat 1995, 199:35-41. OpenURL
  63. Hargreaves RJ, Evans JG, Janota I, Magos L, Cavanagh JB: Persistant mercury in nerve cells 16 years after metallic mercury poisoning. Neuropath Appl Neurobiol 1988, 14:443-452. Publisher Full Text OpenURL
  64. Opitz H, Schweinsberg F, Grossmann T, Wendt-Gallitelli MF, Meyermann R: Demonstration of mercury in the human brain and other organs 17 years after metallic mercury exposure. Clin Neuropath 1996, 15:139-144. OpenURL
  65. Drasch G, Böse-O’Reilly S, Beinhoff C, Roider G, Maydl S: The Mt. Diwata study on the Philippines 1999 – assessing mercury intoxication of the population by small scale gold mining. Sci Total Environ 2001, 267:151-168. PubMed Abstract | Publisher Full Text OpenURL
  66. Drasch G, Böse-O`Reilly S, Maydl S, Roider G: Scientific comment on the German human biological monitoring values (HBM values) for mercury. Int J Hyg Environ Health 2002, 205:509-512. PubMed Abstract | Publisher Full Text OpenURL
  67. Drasch G, Böse-O’Reilly S, Maydl S, Roider G: Response to the letter of the Human Biomonitoring Commission. Int J Hyg Environ Health 2004, 207:183-184. Publisher Full Text OpenURL
  68. Stenman S, Grans L: Symptoms and differential diagnosis of patients fearing mercury toxicity from amalgam fillings. Scand J Work Environ Health 1997, 23:59-63. PubMed Abstract OpenURL
  69. Grandjean P, Weihe P, White R: Milestone development in infants exposed to methylmercury from human milk. Neurotoxicology 1995, 16:27-33. PubMed Abstract OpenURL
  70. Köhler W, Linde K, Halbach S, Zilker T, Kremers L, Saller R, Melchart D: Prognos in the diagnosos of amalgam hypersensitivity: a diagnostic case-control study. Forsch Komplement Med 2007, 14:18-24. OpenURL
  71. WHO: Mercury in Health Care. [http://www.who.int/water_sanitation_health/medicalwaste/mercurypolpaper.pdf] webcitePolicy Paper 2005. OpenURL
  72. Viola P, Cassano GB: The effect of chlorine on mercury vapor intoxication. Autoradiographic study. Med Lavoro 1968, 59:437-44. PubMed Abstract OpenURL
  73. Kishi R, Doi R, Fukuchi Y, Satoh H, Satoh T, Ono A, Moriwaka F, Tashiro K, Takahata N: Subjective symptoms and neurobehavioral performances of ex-mercury miners at an average of 18 years after the cessation of chronic exposure to mercury vapor. Mercury Workers Study Group. Environl Res 1993, 62:289-302. Publisher Full Text OpenURL
  74. Mathiesen T, Ellingsen DG, Kjuus H: Neuropsychological effects associated with exposure to mercury vapor among former chloralkali workers. Scand J Work Environ Health 1999, 25:342-350. PubMed Abstract OpenURL
  75. Meyer-Baron M, Schaeper M, Seeber A: A meta-analysis for neurobehavioral results due to occupational mercury exposure. Arch Toxicol 2002, 76:127-136. PubMed Abstract | Publisher Full Text OpenURL
  76. Piikivi L, Hanninen H, Martelin T, Mantere P: Psychological performance and long-term exposure to mercury vapors. Scand J Work Environ Health 1984, 10:35-41. PubMed Abstract OpenURL
  77. Roels H, Gennart JP, Lauwerys R, Buchet JP, Malchaire J, Bernard A: Surveillance of workers exposed to mercury vapour: validation of a previously proposed biological threshold limit value for mercury concentration in urine. Am J Ind Med 1985, 7:45-71. PubMed Abstract | Publisher Full Text OpenURL
  78. Smith PJ, Langolf GD, Goldberg J: Effects of occupational exposure to elemental mercury on short term memory. Br J Ind Med 1983, 40:413-419. PubMed Abstract | PubMed Central Full Text OpenURL
  79. Soleo L, Urbano ML, Petrera V, Ambrosi L: Effects of low exposure to inorganic mercury on psychological performance. Brit J Ind Med 1990, 47:105-109. OpenURL
  80. Williamson AM, Teo RK, Sanderson J: Occupational mercury exposure and its consequences for behaviour. Int Arch Occup Environ Health. 1982, 50:273-286. PubMed Abstract OpenURL
  81. Zavariz C, Glina DM: Clinico-neuro-psychological evaluation of workers exposed to metallic mercury in the electric lamp industry. Rev Saud Publica 1992, 26:356-65.(In Portugese with English abstract)OpenURL
  82. He F, Zhow X, Lin B, Xiung YP, Chen SY, Zhang SL, Ru JY, Deng MH: Prognosis of Mercury poisoning in mercury refinery workers. Ann Acad Med Singapore 1984, 13:389-393. PubMed Abstract OpenURL
  83. Kishi R, Doi R, Fukushi Y, Satoh H, Ono A: Residual neurobehavioural effects associated with chronic exposure to mercury vapour. Occup Environ Med 1994, 51:35-41. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  84. Kobal A, Horvat M, Prezelj M, Briski AS, Krsnik M, Dizdarevic T, Mazej D, Falnoga I, Stibilj V, Arneric N, Kobal D, Osredkar J: The impact of long-term past exposure to elemental mercury on antioxidative capacity and lipid peroxidation in mercury miners. J Trace Elem Med Biol 2004, 17:261-274. PubMed Abstract | Publisher Full Text OpenURL
  85. Letz R, Gerr F, Cragle D, Green R, Watkins J, Fidler A: Residual neurologic deficits 30 years after occupational exposure to elemental mercury. Neurotoxicology 2000, 21:459-474. PubMed Abstract OpenURL
  86. Sugita M: The biological half-time of heavy metals. The existence of a third, `slowest’ component. Int Arch Occup Environ Health 1978, 41:25-40. PubMed Abstract | Publisher Full Text OpenURL
  87. Takahata N, Hayashi H, Watanabe S, Anso T: Accumulation of mercury in the brains of two autopsy cases with chronic inorganic mercury poisoning. Folia Psychiatr Neurol Jpn 1970, 24:59-69. PubMed Abstract OpenURL
  88. Stoiber T, Bonacker D, Bohm K: Disturbed microtubule function and induction of micronuclei by chelate complexes of mercury(II). Mutat Res 2004, 563:97-106. PubMed Abstract | Publisher Full Text OpenURL
  89. Stoiber T, Degen GH, Bolt HM, Unger E: Interaction of mercury(II) with the microtubule cytoskeleton in IMR-32 neuroblastoma cells. Toxicol Lett 2004, 151(Suppl 1):99-104. PubMed Abstract | Publisher Full Text OpenURL
  90. Thier R, Bonacker D, Stoiber T: Interaction of metal salts with cytoskeletal motor protein systems. Toxicol Lett 2003, 140:75-81. PubMed Abstract | Publisher Full Text OpenURL
  91. Duhr EF, Pendergrass JC, Slevin JT, Haley BE: HgEDTA complex inhibits GTP interactions with the E-site of brain beta-tubulin. Toxicol Appl Pharmacol 1993, 122:273-280. PubMed Abstract | Publisher Full Text OpenURL
  92. Pendergrass JC, Haley BE, Vimy MJ, Winfield SA, Lorscheider FL: Mercury vapor inhalation inhibits binding of GTP to tubulin in rat brain: similarity to a molecular lesion in Alzheimer diseased brain. Neurotoxicology 1996, 18:315-324. OpenURL
  93. Soares FA, Farina M, Santos FW, Souza D, Rocha JB, Nogueira CW: Interaction between metals and chelating agents affects glutamate binding on brain synaptic membranes. Neurochem Res 2003, 28:1859-1865. PubMed Abstract | Publisher Full Text OpenURL
  94. Aposhian HV, Morgan DL, Queen HL, Maiorino RM, Aposhian MM: Vitamin C, glutathione, or lipoic acid did not decrease brain or kidney mercury in rats exposed to mercury vapor. J Toxicol Clin Toxicol 2003, 41:339-347. PubMed Abstract | Publisher Full Text OpenURL
  95. Nogueira CW, Soares FA, Nascimento PC, Muller D, Rocha JB: 2,3-Dimercaptopropane-1-sulfonic acid and meso-2,3-dimercaptosuccinic acid increase mercury- and cadmium-induced inhibition of delta-aminolevulinate dehydratase. Toxicology 2003, 184:85-95. PubMed Abstract | Publisher Full Text OpenURL
  96. Ewan KB, Pamphlett R: Increased inorganic mercury in spinal motor neurons follwoing chelating agents. Neurotoxicology 1996, 17:343-349. PubMed Abstract OpenURL
  97. Harris HH, Pickering IJ, George GN: The chemical form of mercury in fish. Science 2003, 301:1203. PubMed Abstract | Publisher Full Text OpenURL
  98. Fredriksson A, Dencker L, Archer T, Danielsson BR: Prenatal coexposure to metallic mercury vapour and methylmercury produce interactive behavioural changes in adult rats. Neurotoxicol Teratol 1996, 18:129-134. PubMed Abstract | Publisher Full Text OpenURL
  99. Lettmeier B, Böse o, Reilly S, Drasch G: Proposal for a revised reference concentration (RFC) for mercury vapour in adults. Sci Total Environ 2010. OpenURL
  100. Richardson GM, Environment Division of SNC-Lavalin Inc (SLE), Ottawa (Canada).: Mercury exposure and risks from dental amalgam, part 1: updating exposure, reexamining reference exposure levels, and critically evaluating recent studies. [http:/ / iaomt.org/ articles/ files/ files329/ Amalgam%20Risk%20Assessment%20Part% 201.SLE%20reference%2010738.Final2. pdf] webcite2010. PubMed Abstract | Publisher Full Text OpenURL
  101. Schubert J, Riley EJ, Tyler SA: Combined effects in toxicology – a rapid systematic testing procedure: cadmium, mercury, and lead. J Toxicol Environ Health 1978, 4:763-776. PubMed Abstract | Publisher Full Text OpenURL
  102. Haley B: The relationship of toxic effects of mercury to exacerbation of the medical condition classified as alzheimer’s disease. [http://www.fda.gov/ohrms/dockets/dailys/02/Sep02/091602/80027dd5.pdf] webcite
  103. Ericson JE, Shirahata H, Patterson CC: Skeletal concentrations of lead in ancient Peruvians. N Engl J Med 1979, 300:946-951. PubMed Abstract | Publisher Full Text OpenURL
  104. Ericson JE, Smith DR, Flegal AR: Skeletal concentrations of lead, cadmium, zinc, and silver in ancient North American Pecos Indians. Environ Health Perspect 1991, 93:217-223. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  105. Drasch G: Lead burden in prehistorical, historical and modern human bones. Sci Total Environ 1982, 24:199-231. PubMed Abstract | Publisher Full Text OpenURL
  106. Patterson CC, Shirahata H, Ericson JE: Lead in ancient human bones and the relevance to historical developments of social problems with lead. Sci Total Environ 1987, 61:167-200. PubMed Abstract | Publisher Full Text OpenURL
  107. Patterson CC, Shirahata H, Ericson JE: Natural skeletal levels of lead in Homo sapiens sapiens uncontaminated by technological lead. Sci Total Environ 1991, 107:205-236. PubMed Abstract | Publisher Full Text OpenURL
  108. Haley B: Mercury toxicity: Genetic susceptibilities and synergistic effects. Medical Veritas 2005, 2:535-542. Publisher Full Text OpenURL
  109. Haley B, Small T: Biomarkers supporting mercury toxicity as the major exacerbator of neurological illness, recent evidence via the urine prophyrin tests. Medical Veritas 2006, 3:1-14. OpenURL
  110. Kehe K, Reichl FX, Durner J, Walther U, Hickel R, Forth W: Cytotoxicity of dental composite components and mercury compounds in pulmonary cells. Biomaterials 2001, 22:317-322. PubMed Abstract | Publisher Full Text OpenURL
  111. Reichl FX, Walther UI, Durner J, Kehe K, Hickel R, Kunzelmann KH, Spahl W, Hume WR, Benschop H, Forth W: Cytotoxicity of dental composite components and mercury compounds in lung cells. Dent Mater 2001, 17:95-101. PubMed Abstract | Publisher Full Text OpenURL
  112. Reichl FX, Simon S, Esters M, Seiss M, Kehe K, Kleinsasser N, Hickel R: Cytotoxicity of dental composite (co)monomers and the amalgam component Hg(2+) in human gingival fibroblasts. Arch Toxicol 2006, 80:465-472. PubMed Abstract | Publisher Full Text OpenURL
  113. Reichl FX, Esters M, Simon S, Seiss M, Kehe K, Kleinsasser N, Folwaczny M, Glas J, Hickel R: Cell death effects of resin-based dental material compounds and mercurials in human gingival fibroblast. Arch Toxicol 2006, 80:370-377. PubMed Abstract | Publisher Full Text OpenURL
  114. Walther UI, Walther SC, Liebl B, Kehe K, Hickel R, Kunzelmann KH, Spahl W, Hume WR, Benschop H, Forth W: Cytotoxicity of ingredients of various dental materials and related compounds in L2- and A549 cells. J Biomed Mater Res 2002, 63:643-649. PubMed Abstract | Publisher Full Text OpenURL
  115. Di Pietro A, Visalli G, La Maestra S: Biomonitoring of DNA damage in peripheral blood lymphocytes of subjects with dental restorative fillings. Mutat Res 2008, 650:115-122. PubMed Abstract | Publisher Full Text OpenURL
  116. Schmid K, Sassen A, Staudenmaier R: Mercury dichloride induces DNA-damage in human salivary gland tissue calls and lymphocytes. Arch Toxicol 2007, 1:759-767. Publisher Full Text OpenURL
  117. Akiyama M, Oshima H, Nakamura M: Genotoxicity of mercury used in chromosome aberration tests. Toxicol in Vitro 2001, 15:463-467. PubMed Abstract | Publisher Full Text OpenURL
  118. Pizzichini M, Fonzi M, Sugherini L, Fonzi L, Gasparoni A, Comporti M, Pompella A: Release of mercury from dental amalgam and its influence on salivary antioxidant activity. Bull Group Int Rech Sci Stomatol Odontol 2000, 42:94-100. PubMed Abstract OpenURL
  119. Pizzichini M, Fonzi M, Sugherini L, Fonzi L, Comporti M, Gasparoni A, Pompella A: Release of mercury from dental amalgam and its influence on salivary antioxidant activity. Sci Total Environ 2002, 284:19-25. PubMed Abstract | Publisher Full Text OpenURL
  120. Pizzichini M, Fonzi M, Gasparoni A, Fonzi L, Comporti M, Gasparoni A, Pompella A: Influence of amalgam fillings on Hg levels and total antioxidant activity in plasma of healthy donors. Bull Group Int Rech Sci Stomatol Odontol 2001, 43:62-67. PubMed Abstract OpenURL
  121. Pizzichini M, Fonzi M, Giannerini F, Mencarelli M, Gasparoni A, Rocchi G, Kaitsas V, Fonzi L: Influence of amalgam fillings on Hg levels and total antioxidant activity in plasma of healthy donors. Sci Total Environ 2003, 301:43-50. PubMed Abstract | Publisher Full Text OpenURL
  122. Ionescu JG, Novotny J, Stejskal V, Lätsch A, Blaurock-Busch E, Eisenmann-Klein M: Increased levels of transition metals in breast cancer tissue. Neuro Endocrinol Lett 2006, 27:36-39. PubMed Abstract OpenURL
  123. Drasch G, Mailänder S, Schlosser C, Roider G: Content of non-mercury-associated selenium in human tissues. Biol Trace Element Res 2000, 77:219-230. Publisher Full Text OpenURL
  124. Mutter J, Curth A, Naumann J, Deth R, Walach H: Does Inorganic Mercury Play a Role in Alzheimer’s Disease? A Systematic Review and an Integrated Molecular Mechanism. J Alzheimers Dis 2010, 22:357-374. PubMed Abstract | Publisher Full Text OpenURL
  125. Liebert CA, Wireman J, Smith T, Summers AO: The impact of mercury released from dental “silver” fillings on antibiotic resistances in the primate oral and intestinal bacterial flora. Met Ions Biol Syst 1997, 34:441-460. PubMed Abstract OpenURL
  126. Lorscheider FL, Vimy MJ, Summers AO, Zwiers H: The dental amalgam mercury controversy–inorganic mercury and the CNS; genetic linkage of mercury and antibiotic resistances in intestinal bacteria. Toxicology 1995, 97:19-22. PubMed Abstract | Publisher Full Text OpenURL
  127. Summers AO, Wireman J, Vimy MJ, Lorscheider FL, Marshall B, Levy SB: Mercury released from dental “silver” fillings provokes an increase in mercury- and antibiotic-resistant bacteria in oral and intestinal floras of primates. Antimicrob Agents Chemother 1993, 37:825-834. PubMed Abstract | PubMed Central Full Text OpenURL
  128. Davis IJ, Roberts AP, Ready D, Richards H, Wilson M, Mullany P: Linkage of a novel mercury resistance operon with streptomycin resistance on a conjugative plasmid in Enterococcus faecium. Plasmid 2005, 54:26-38. PubMed Abstract | Publisher Full Text OpenURL
  129. Skurnik D, Ruimy R, Ready D, Ruppe E, Bernède-Bauduin C, Djossou F, Guillemot D, Pier GB, Andremont A: Is exposure to mercury a driving force for the carriage of antibiotic resistance genes? J Med Microbiol 2010, 59:804-807. PubMed Abstract | Publisher Full Text OpenURL
  130. Leistevuo J, Jarvinen H, Osterblad M, Leistevuo T, Huovinen P, Tenovuo J: Resistance to mercury and antimicrobial agents in Streptococcus mutans isolates from human subjects in relation to exposure to dental amalgam fillings. Antimicrob Agents Chemother 2000, 44:456-457. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  131. Pike R, Lucas V, Stapleton P, Gilthorpe MS, Roberts G, Rowbury R, Richards H, Mullany P, Wilson M: Prevalence and antibiotic resistance profile of mercury-resistant oral bacteria from children with and without mercury amalgam fillings. J Antimicrob Chemother 2002, 49:777-783. PubMed Abstract | Publisher Full Text OpenURL
  132. Wireman J, Liebert CA, Smith T, Summers AO: Association of mercury resistance with antibiotic resistance in the gram-negative fecal bacteria of primates. Appl Environ Microbiol 1997, 63:4494-4503. PubMed Abstract | PubMed Central Full Text OpenURL
  133. Harris HH, Vogt S, Eastgate H, Legnini DG, Hornberger B, Cai Z, Lai B, Lay PA: Migration of mercury from dental amalgam through human teeth. J Synchrotron Radiat 2008, 15:123-128. PubMed Abstract | Publisher Full Text OpenURL
  134. Weidinger S, Kramer U, Dunemann L, Mohrenschlager M, Ring J, Behrendt H: Body burden of mercury is associated with acute atopic eczema and total IgE in children from southern Germany. J Allergy Clin Immunol 2004, 114:457-459. PubMed Abstract | Publisher Full Text OpenURL
  135. Berlin M: Mercury in dental-filling materials – an updated risk analysis in environmental medical terms. In The Dental Material Comission – Care and Consideration. Sweden; 2003. OpenURL
  136. Dunsche A, Frank M, Luttges J, Açil Y, Brasch J, Christophers E, Springer IN: Lichenoid reactions of murine mucosa associated with amalgam. Br J Dermatol 2003, 148:741-748. PubMed Abstract | Publisher Full Text OpenURL
  137. Dunsche A, Kastel I, Terheyden H, Springer I, Christophers E, Brasch J: Oral lichenoid reactions associated with amalgam: improvement after amalgam removal. Br J Dermatol 2003, 148:70-76. PubMed Abstract | Publisher Full Text OpenURL
  138. Martin M, Broughton S, Drangsholt M: Oral lichen planus and dental materials: a case-control study. Contact Dermatitis 2003, 48:331-336. PubMed Abstract | Publisher Full Text OpenURL
  139. Wong L, Freeman S: Oral lichenid lesions (OLL) and mercury in amalgam fillings. Contact Dermatitis 2003, 48:74-79. PubMed Abstract | Publisher Full Text OpenURL
  140. Guttman-Yassky E, Weltfriend S, Bergman R: Resolution of orofacial granulomatosis with amalgam removal. J Eur Acad Dermatol Venerol 2003, 17:344-347. Publisher Full Text OpenURL
  141. Guarneri F, Marini H: Perioral dermatitis after dental filling in a 12-year-old girl: involvement of cholinergic system in skin neuroinflammation? ScientificWorldJournal 2008, 8:157-163. PubMed Abstract | Publisher Full Text OpenURL
  142. Pigatto PD, Brambilla L, Guzzi G: Mercury pink exanthem after dental amalgam placement. J Eur Acad Dermatol Venereol 2008, 22:377-378. PubMed Abstract | Publisher Full Text OpenURL
  143. Bartova J, Prochazkova J, Kratka Z, Benetkova K, Venclikova Z, Sterzl I: Dental amalgam as one of the risk factors in autoimmune diseases. Neuro Endocrinol Lett 2003, 24:65-67. PubMed Abstract OpenURL
  144. Hultman P, Johansson U, Turley S, Lindh U, Enestrom S, Pollard K: Adverse immunological effects and autoimmunity induced by dental amalgam and alloy in mice. FASEB Journal 1994, 8:1183-1190. PubMed Abstract | Publisher Full Text OpenURL
  145. Hultman P, Lindh U, Horsted-Binslev P: Activation of the immune system and systemic immune-complex deposits in Brown Norway rats with dental amalgam restorations. J Dent Res 1998, 77:1415-1425. PubMed Abstract | Publisher Full Text OpenURL
  146. Pollard KM, Pearson DL, Hultman P, Deane TN, Lindh U, Kono DH: Xenobiotic acceleration of idiopathic systemic autoimmunity in lupus-prone bxbs mice. Environ Health Persp 2001, 109:27-33. Publisher Full Text OpenURL
  147. Prochazkova J, Sterzl I, Kucerova H, Bartova J, Stejskal VDM: The beneficial effect of amalgam replacement on health in patients with autoimmunity. Neuro Endocrinol Lett 2004, 25:211-218. PubMed Abstract OpenURL
  148. Stejskal J, Stejskal VD: The role of metals in autoimmunity and the link to neuroendocrinology. Neuro Endocrinol Lett 1999, 20:351-364. PubMed Abstract OpenURL
  149. Stejskal VD, Danersund A, Lindvall A: Metal-specific lymphocytes: biomarkers of sensitivity in man. Neuro Endocrinol Lett 1999, 20:289-298. PubMed Abstract OpenURL
  150. Sterzl I, Procházková J, Hrdá P, Bártová J, Matucha P, Stejskal VDM: Mercury and nickel allergy: risk factors in fatigue and autoimmunity. Neuro Endocrinol Lett 1999, 20:221-228. PubMed Abstract OpenURL
  151. Via CS, Nguyen P, Niculescu F, Papadimitriou J, Hoover D, Silbergeld EK: Low-dose exposure to inorganic mercury accelerates disease and mortality in acquired murine lupus. Environ Health Perspect 2003, 111:1273-1277. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  152. Sterzl I, Procházková J, Hrda P, Matucha P, Bartova J, Stejskal V: Removal of dental amalgam decreases anto-TPO and anti-Tg autoantibodies in patients with autoimmune thyroiditis. Neuro Endocrinol Lett 2006, 5(27(Suppl 1):25-30. OpenURL
  153. Kazantzis G: Mercury exposure and early effects: an overview. Med Lav 2002, 93:139-147. PubMed Abstract OpenURL
  154. Rampersad GC, Suck G, Sakac D, Fahim S, Foo A, Denomme GA, Langler RF, Branch DR: Chemical compounds that target thiol-disulfide groups on mononuclear phagocytes inhibit immune mediated phagocytosis of red blood cells. Transfusion 2005, 45:384-393. PubMed Abstract | Publisher Full Text OpenURL
  155. Bartram F, Donate HP, Müller KE, Bückendorf CH, Ohnsorge P, Huber W, von Baehr V: Significance of the patch test and the lymphocyte transformation test in the diagnostic of type IV-sensitazion. J Lab Med 2006, 30:101-106. OpenURL
  156. Venclíková Z, Benada O, Bártová J, Joska L, Mrklas L, Procházková J, Stejskal V, Podzimek S: In vivo effects of dental casting alloys. Neuro Endocrinol Lett 2006, 27(Suppl 1):61-68. OpenURL
  157. Valentine-Thon E, Schiwara HW: Validity of MELISA for metal sensitivity testing. Neuro Endocrinol Lett 2003, 24:50-55. PubMed Abstract OpenURL
  158. Valentine-Thon E, Sandkamo M, Müller K, Guzzi G, Hartmann T: Metallsensibilisierung: Nachweis, Validierung und Verlaufskontrolle mittels Lymphozyten-Transformations-Test (LTT-Melisa®). Zs f Orthomol Med 2005, 1:12-15. OpenURL
  159. Valentine-Thon E, Muller KE, Guzzi G, Kreisel S, Ohnsorge P, Sandkamp M: LTT-MELISA® is clinically relevant for detecting and monitoring metal sensitivity. Neuro Endocrinol Lett 2006, 27(Suppl1):17-24. PubMed Abstract OpenURL
  160. Yaqob A, Danersund A, Stejskal VD, Lindvall A, Hudecek R, Lindh U: Metal-specific lymphocyte reactivity is downregulated after dental metal replacement. Neuro Endocrinol Lett 2006, 27:189-197. PubMed Abstract OpenURL
  161. Lindh U, Hudecek R, Dandersund A, Eriksson S, Lindvall A: Removal of dental amalgam and other metal alloys supported by antioxidant therapy alleviates symptoms and improves quality of life in patients with amalgam-associated ill health. Neuro Endocrinol Lett 2002, 23:459-482. PubMed Abstract OpenURL
  162. Stejskal VD: Diagnosis and treatment of metal-induced side effects. Neuro Endocrinol Lett 2006, 27(Suppl 1):7-16. OpenURL
  163. Wortberg W: Intrauterine Fruchtschädigung durch Schwermetallbelastung der Mutter. Umwelt Medizin Gesellschaft 2006, 19:274-280. OpenURL
  164. Houston MC: The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern Ther Health Med 2007, 13:128-133,. OpenURL
  165. Frustaci A, Magnavita N, Chimenti C, Cladarulo M, Sabbioni E, Pietra R: Marked elevation of myocardial trace elements in idiopathic dilated cardiomyopathy compared with secondary cardiac dysfunction. J Am Coll Cardiol 1999, 33:1578-1583. PubMed Abstract | Publisher Full Text OpenURL
  166. Dodes JE: The amalgam controversy. An evidence-based analysis. J Am Dent Assoc 2001, 132:348-356. PubMed Abstract | Publisher Full Text OpenURL
  167. Boyd ND, Benediktsson H, Vimy MJ, Hooper DE, Lorscheider FL: Mercury from dental “silver” tooth fillings impairs sheep kidney function. Am J Physiol 1991, 261:1010-1014. OpenURL
  168. Trachtenberg F, Barregård L: The effect of age, sex, and race on urinary markers of kidney damage in children. Am J Kidney Dis 2007, 50:938-945. PubMed Abstract | Publisher Full Text OpenURL
  169. Mutter J, Naumann J, Sadaghiani C, Walach H: Quecksilber und die Alzheimer-Erkrankung. Fortschr Neuro Psychiat 2007, 75:528-538. Publisher Full Text OpenURL
  170. Mutter J, Naumann J, Guethlin C: Comments on the article “the toxicology of mercury and its chemical compounds” by Clarkson and Magos (2006). Crit Rev Toxicol 2007, 37:537-549. PubMed Abstract | Publisher Full Text OpenURL
  171. Carpenter DO: Effects of metals on the nervous system of humans and animals. Int J Occup Med Environ Health 2001, 14:209-218. PubMed Abstract OpenURL
  172. Dantzig PI: Parkinson’s disease, macular degeneration and cutaneous signs of mercury toxicity. J Occup Environ Med 2006, 48:656. PubMed Abstract | Publisher Full Text OpenURL
  173. Finkelstein Y, Vardi J, Kesten MM, Hod I: The enigma of parkinsonism in chronic borderline mercury intoxication, resolved by challenge with penicillamine. Neurotoxicology 1996, 17:291-295. PubMed Abstract OpenURL
  174. Gorell JM, Rybicki BA, Johnson C, Peterson EL: Occupational metal exposures and the risk of Parkinson’s disease. Neuroepidemiology 1999, 18:303-308. PubMed Abstract | Publisher Full Text OpenURL
  175. Miller K, Ochudto S, Opala G, Smolicha W, Siuda J: Parkinsonism in chronic occupational metallic mercury intoxication. Neurol Neurochir Pol 2003, 37:31-38. PubMed Abstract OpenURL
  176. Ngim CH, Devathasan G: Epidemiologic study on the association between body burden mercury level and idiopathic Parkinson’s disease. Neuroepidemiology 1989, 8:128-141. PubMed Abstract | Publisher Full Text OpenURL
  177. Ohlson CG, Hogstedt C: Parkinson’s disease and occupational exposure to organic solvents, agricultural chemicals and mercury – a case-referent study. Scand J Work Environ Health 1981, 7:252-256. PubMed Abstract OpenURL
  178. Rybicki BA, Johnson CC, Uman J, Gorell JM: Parkinson’s disease mortality and the industrial use of heavy metals in Michigan. Mov Disord 1993, 8:87-92. PubMed Abstract | Publisher Full Text OpenURL
  179. Seidler A, Hellenbrand W, Robra BP: Possible environmental, occupational, and other etiologic factors for Parkinson’s disease: a case-control study in Germany. Neurology 1996, 46:1275-84. PubMed Abstract OpenURL
  180. Uversky VN, Li J, Fink AL: Metal-triggered structural transformations, aggregation, and fibrillation of human alpha-synuclein. A possible molecular NK between Parkinson’s disease and heavy metal exposure. J Biol Chem 2001, 276:44284-44296. PubMed Abstract | Publisher Full Text OpenURL
  181. Harakeh S, Sabra N, Kassak K, Doughan B, Sukhn C: Mercury and arsenic levels among Lebanese dentists: a call for action. Bull Environ Contam Toxicol 2003, 70:629-635. PubMed Abstract | Publisher Full Text OpenURL
  182. Tezel H, Ertas OS, Ozata F, Erakin C, Kayali A: Blood mercury levels of dental students and dentists at a dental school. Br Dent J 2001, 191:449-452. PubMed Abstract | Publisher Full Text OpenURL
  183. Aydin N, Karaoglanoglu S, Yigit A, Keles MS, Kirpinar I, Seven N: Neuropsychological effects of low mercury exposure in dental staff in Erzurum, Turkey. Int Dent J 2003, 53:85-91. PubMed Abstract OpenURL
  184. Bittner ACJ, Echeverria D, Woods JS: Behavioral effects of low-level exposure to HgO among dental professional: a cross-study evaluation of psychomotor effects. Neuortoxicol Teratol 1998, 17:161-168. OpenURL
  185. Echeverria D, Heyer NJ, Martin MD, Naleway C, Woods JS, Bittner ACJ: Behavioral effects of low-level exposure to elemental Hg among dentists. Neurotoxicol Teratol 1995, 17:161-168. PubMed Abstract | Publisher Full Text OpenURL
  186. Echeverria D, Woods JS, Heyer N, Rohlman DS, Farin FM, Bittner AC Jr, Li T, Garabedian C: Chronic low-level mercury exposure, BDNF polymorphism and associations with cognitive and motor function. Neurotoxicol Teratol 2005, 27:781-796. PubMed Abstract | Publisher Full Text OpenURL
  187. Heyer NJ, Echeverria D, Bittner AJ, Farin FM, Garabedian CC, Woods JS: Chronic low-level mercury exposure, BDNF polymorphism, and associations with self-reported symptoms and mood. Toxicol Sci 2004, 81:354-363. PubMed Abstract | Publisher Full Text OpenURL
  188. Heyer NJ, Bittner AJ, Echerverria D, Woods J: A cascade analysis of the interaction of mercury and coproporphyrinogen-oxidase (CPOX) polymorphism on the heme biosynthetic pathway and porphyrin production. Toxicol Lett 2006, 161:159-166. PubMed Abstract | Publisher Full Text OpenURL
  189. Gonzalez-Ramirez D, Maiorino RM, Zuniga-Charles M: Sodium 2,3-dimercaptopropane-1-sulfonate challenge test for mercury in humans: II. Urinary mercury, porphyrins and neurobehavioral changes of dental workers in Monterrey, Mexico. J Pharmacol Exp Ther 1995, 272:264-274. PubMed Abstract | Publisher Full Text OpenURL
  190. Langworth S, Sallsten G, Barregard L, Cynkier I, Lind ML, Soderman E: Exposure to mercury vapor and impact on health in the dental profession in Sweden. J Dent Res 1997, 76:1397-1404. PubMed Abstract | Publisher Full Text OpenURL
  191. Moen BE, Hollund BE, Riise T: Neurological symptoms among dental assistants: a cross-sectional study. J Occup Med Toxicol 2008, 18:3-10. OpenURL
  192. Ngim CH, Foo SC, Boey KW, Jeyaratnam J: Chronic neurobehavioral effects of elemental mercury in dentists. Br J Ind Med 1992, M49:782-790. OpenURL
  193. Ritchie KA, Macdonald EB, Hammersley R, O’Neil JM, McGowan DA, Dale IM, Wesnes K: A pilot study of the effect of low level exposure to mercury on the health of dental surgeons. J Occup Environ Med 1995, 52:813-817. Publisher Full Text OpenURL
  194. Ritchie KA, Gilmour WH, Macdonald EB, Burke FJ, McGowan DA, Dale IM, Hammersley R, Hamilton RM, Binnie V, Collington D: Health and neuropsychological functioning of dentists exposed to mercury. J Occup Environ Med 2002, 59:287-293. Publisher Full Text OpenURL
  195. Uzzell BP, Oler J: Chronic low-level mercury exposure and neuropsychological functioning. J Clin Exp Neuropsychol 1986, 8:581-593. PubMed Abstract | Publisher Full Text OpenURL
  196. Urban P, Lukas E, Nerudova J, Cabelkova Z, Cikrt M: Neurological and electrophysiological examinations on three groups of workers with different levels of exposure to mercury vapors. Eur J Neurol 1999, 6:571-577. PubMed Abstract | Publisher Full Text OpenURL
  197. Nadorfy-Lopez E, Torres SH, Finol H, Mendez M, Bello B: Skeletal muscle abnormalities associated with occupational exposure to mercury vapors. Hist Histopath 2000, 15:673-682. OpenURL
  198. Rowland A, Baird D, Weinberg C, Shore D, Shy C, Wilcox A: The effect of occupational exposure to the mercury vapour on the fertility of female dental assistants. Occup Environ Med 1994, 51:28-34. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  199. Lindbohm ML, Ylöstalo P, Sallmen M: Occupational exposure in dentistry and miscarriage. Occup Environ Med 2007, 64:127-133. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  200. Jones L, Bunnell J, Stillman J: A 30-year follow-up of residual effects on New Zealand School Dental Nurses, from occupational mercury exposure. Hum Exp Toxicol 2007, 26:367-374. PubMed Abstract | Publisher Full Text OpenURL
  201. Echeverria D, Woods JS, Heyer NJ, Rohlman D, Farin FM, Li T, Garabedian CE: The association between a genetic polymorphism of coproporphyrinogen oxidase, dental mercury exposure and neurobehavioral response in humans. Neurotoxicol Teratol 2006, 28:39-48. PubMed Abstract | Publisher Full Text OpenURL
  202. Gerhard I, Monga B, Waldbrenner A, Runnebaum B: Heavy metals and fertility. J Toxicol Environ Health. 1998, 54:593-611. PubMed Abstract OpenURL
  203. Gerhard I, Waibel S, Daniel V, Runnebaum B: Impact of heavy metals on hormonal and immunological factors in women with repeated miscarriages. Hum Reprod Update 1998, 4:301-309. PubMed Abstract | Publisher Full Text OpenURL
  204. Gerhard I, Runnebaum B: The limits of hormone substitution in pollutant exposure and fertility disorders. Zentralbl Gynaekol 1992, 114:593-602. OpenURL
  205. Sheiner EK, Sheiner E, Hammel RD, Potashnik G, Carel R: Effect of occupational exposures on male fertility: literature review. Ind Health 2003, 41:5:5-62. OpenURL
  206. Podzimek S, Prochazkova J, Pribylova L, Bártová J, Ulcová-Gallová Z, Mrklas L, Stejskal VD: Effect of heavy metals on immune reactions in patients with infertility. Cas Lek Cesk 2003, 142:285-288. PubMed Abstract OpenURL
  207. Podzimek S, Prochazkova J, Bultasova L, Bartova J, Ulcova-Gallova Z, Mrklas L, Stejskal VD: Sensitization to inorganic mercury could be a risk factor for infertility. Neuro Endocrinol Lett 2005, 26:277-282. PubMed Abstract OpenURL
  208. Ahlrot-Westerlund B: Mercury in cerebrospinal fluid in multiple sclerosis. Swed J Biol Med 1989, 1:6-7. OpenURL
  209. Craelius W: Comperative epidemiology of multiple sclerosis and dental caries. J Epidemiol Comm Health 1978, 32:155-165. Publisher Full Text OpenURL
  210. McGrother C, Dugmore C, Phillips M, Raymond N, Garrick P, Baird W: Multiple sclerosis, dental caries and fillings: a case-control study. Br Dent J 1999, 187:261-264. PubMed Abstract | Publisher Full Text OpenURL
  211. Baasch E: Theoretical considerations on the etiology of multiple sclerosis. Is multiple sclerosis a mercury allergy? Schweiz Arch Neurol Neurochir Psychiatr 1966, 98:1-19. PubMed Abstract OpenURL
  212. Ingalls T: Epidemiology, etiology and prevention of multiple sclerosis. Hypothesis and fact. Am J Forensic Med Pathol 1983, 4:55-61. PubMed Abstract | Publisher Full Text OpenURL
  213. Ingalls T: Endemic clustering of multiple sclerosis in time and place, 1934-1984. Confirmation of a hypothesis. Am J Forensic Med Pathol 1986, 7:3-8. PubMed Abstract | Publisher Full Text OpenURL
  214. Issa Y, Watts D, Duxbury A, Brunton P, Watson M, Waters C: Mercuric chloride: toxicity and apoptosis in a human oligodendroglial cell line. Biomaterials 2003, 24:981-987. PubMed Abstract | Publisher Full Text OpenURL
  215. Siblerud RL: A comparison of mental health of multiple sclerosis patients with silver/mercury dental fillings and those with fillings removed. Psychol Rep 1992, 70:1139-1151. PubMed Abstract | Publisher Full Text OpenURL
  216. Siblerud RL, Kienholz E, Motl J: Evidence that mercury from silver dental fillings may be an etiological factor in smoking. Toxicol Lett 1993, 68:307-310. PubMed Abstract | Publisher Full Text OpenURL
  217. Huggins HA, Levy TE: Cerebrospinal fluid protein changes in multiple sclerosis after dental amalgam removal. Altern Med Rev 1998, 4:295-300. OpenURL
  218. Bates M, Fawcett J, Garrett N, Cutress T, Kjellstrom T: Related articles, health effects of dental amalgam exposure: a retrospective cohort study. Int J Epidemiol 2004, 33:894-902. PubMed Abstract | Publisher Full Text OpenURL
  219. Bates MN: Mercury amalgam dental fillings: an epidemiologic assessment. Int J Hyg Environ Health 2006, 209(Suppl 4):309-316. PubMed Abstract | Publisher Full Text OpenURL
  220. Aminzadeh KK, Etminan M: Dental amalgam and multiple sclerosis: a systematic review and meta-analysis. J Public Health Dent 2007, 67:64-66. PubMed Abstract | Publisher Full Text OpenURL
  221. Pamphlett R, Coote P: Entry of low doses of mercury vapor into the nervous system. Neurotoxicology 1998, 19:39-47. PubMed Abstract OpenURL
  222. Pamphlett R, Slater M, Thomas S: Oxidative damage to nuclic acids in motor neurons containing mercury. J Neurol Sci 1998, 159:121-126. PubMed Abstract | Publisher Full Text OpenURL
  223. Pamphlett R, Waley P: Motor neuron uptake of low dose inorganic mercury. J Neurol Sci 1996, 135:63-67. PubMed Abstract | Publisher Full Text OpenURL
  224. Praline J, Guennoc AM, Limousin N, Hallak H, deToffol B, Corcia P: ALS and mercury intoxication: a relationship? Clin Neurol Neurosurg 2007, 109(Suppl 10):880-883. PubMed Abstract | Publisher Full Text OpenURL
  225. Stankovic R: Atrophy of large myelinated motor axons and declining muscle grip strength following mercury vapour inhalation in mice. Inhal Toxicol 2006, 18:57-69. PubMed Abstract | Publisher Full Text OpenURL
  226. Albrecht J, Matya E: Glutamate: a potential mediator of inorganic mercury neurotoxicity. Metab Brain Dis 1996, 11:175-184. PubMed Abstract | Publisher Full Text OpenURL
  227. Adams C, Ziegler D, Lin J: Mercury intoxication simulating amyotrophic lateral sclerosis. JAMA 1983, 250:642-643. PubMed Abstract | Publisher Full Text OpenURL
  228. Schwarz S, Husstedt I, Bertram H, Kuchelmeister K: Amyotrophic lateral sclerosis after accidental injection of mercury. J Neurol Neurosurg Psychiatry 1996, 60:698. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  229. Redhe O, Pleva J: Recovery from amyotrophic lateral sclerosis and from allergy after removal of dental amalgam fillings. Int J Risk Saf Med 1994, 4:229-236. OpenURL
  230. Engel P: Beobachtungen über die Gesundheit vor und nach Amalgamentfernung. [Observations on health before and after removing dental amalgam]. Schweiz Monatsschr Zahnm 1998, 108:2-14. OpenURL
  231. Godfrey ME, Wojcik DP, Krone CA: Apolipoprotein E genotyping as a potential biomarker for mercury neurotoxicity. J Alz Dis 2003, 5:189-195. OpenURL
  232. Siblerud RL: The relationship between mercury from dental amalgam and mental health. Am J Psychother 1989, 43:575-587. PubMed Abstract OpenURL
  233. Siblerud RL, Motl J, Kienholz E: Psychometric evidence that mercury from silver dental fillings may be an etiological factor in depression, excessive anger, and anxiety. Psychol Rep 1994, 74:67-80. PubMed Abstract OpenURL
  234. Wojcik DP, Godfrey ME, Haley B: Mercury toxicity presenting as chronic fatigue, memory impairment and depression: diagnosis, treatment, susceptibility, and outcomes in a New Zealand general practice setting (1994-2006). Neuro Endocrinol Lett 2006, 27:415-423. PubMed Abstract OpenURL
  235. Marcusson J: Psychological and somatic subjective as a result of dermatological patch testing with metallic mercury and phenyl mercuric acetate. Toxicol Lett 1996, 84:113-122. PubMed Abstract | Publisher Full Text OpenURL
  236. Marcusson J, Jarstrand C: Oxidative metabolism of neutrophils in vitro and human mercury intolerance. Toxicol in Vitro 1998, 12:383-388. PubMed Abstract | Publisher Full Text OpenURL
  237. Marcusson J: The frequency of mercury intolerance in patients with chronic fatigue syndrome and healthy controls. Contact Dermatitis 1999, 41:60-61. PubMed Abstract | Publisher Full Text OpenURL
  238. Woods J Martin, Naleway CA, Echeverria D: Urinary porphyrin profiles as a biomarker of mercury exposure: studies on dentists with occupational exposure to mercury vapor. J Toxicol Environ Health 1993, 40:235-46. PubMed Abstract | Publisher Full Text OpenURL
  239. Nataf R, Skorupka C, Amet L, Lam A, Springbett A, Lathe R: Porphyrinuria in childhood autistic disorder: implications for environmental toxicity. Toxicol Appl Pharmacol 2006, 214:99-108. PubMed Abstract | Publisher Full Text OpenURL
  240. Geier DA, Geier MR: A prospective assessment of porphyrins in autistic disorders: a potential marker for heavy metal exposure. Neurotox Res 2006, 10:57-64. PubMed Abstract | Publisher Full Text OpenURL
  241. Geier DA, Geier MR: A meta-analysis epidemiological assessment of neurodevelopmental disorders following vaccines administered from 1994 through 2000 in the United States. Neuro Endocrinol Lett 2006, 27:401-413. PubMed Abstract OpenURL
  242. Woods JS, Echeverria D, Heyer NJ, Simmonds PL, Wilkerson J, Farin FM: The association between genetic polymorphisms of coproporphyrinogen oxidase and an atypical porphyrinogenic response to mercury exposure in humans. Toxicol Appl Pharmacol 2005, 206:113-120. PubMed Abstract | Publisher Full Text OpenURL
  243. Atamna H, Frey WH: A Role for heme in Alzheimer’s disease: Heme binds amyolid β and has altered metabolism. PNAS 2004, 101(Suppl 30):153-158. PubMed Abstract | PubMed Central Full Text OpenURL
  244. Stewart WF, Schwartz BS, Simon D, Kelsey K, Todd AC: ApoE genotype, past adult lead exposure, and neurobehavioral function. Environ Health Perspect 2002, 110:501-505. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  245. Mutter J, Naumann J, Schneider R, Walach H, Haley B: Mercury an autism: Accelerating evidence? Neuro Endocrinol Lett 2005, 26:431-437. OpenURL
  246. Mutter J, Naumann J, Walach H, Daschner F: Amalgam: Eine Risikobewertung unter Berücksichtigung der neuen Literatur bis 2005. Gesundheitswesen 2005, 67:204-216. PubMed Abstract | Publisher Full Text OpenURL
  247. Mutter J, Naumann J, Sadaghiani C, Walach H, Drasch G: Mercury an autism: Response to the letter of K.E.v. Muehlendahl. Int J Hyg Environ Health 2005, 208:437-438. Publisher Full Text OpenURL
  248. Kidd R: Results of dental amalgam removal and mercury detoxification using DMPS and neural therapy. Altern Ther Health 2000, 6:49-55. OpenURL
  249. Lindforss H, Marqvardsen O, Olsson S, Henningson M: Effekter på hälsan efter avlägsnandet av amalgamfyllingar. Enodontologisk, medicinsk och psykosomatisk studie. Tandläkartidningen 1994, 86:205-211. OpenURL
  250. Lygre GB, Gjerdet NR, Bjorkman L: Patients’ choice of dental treatment following examination at a specialty unit for adverse reactions to dental materials. Acta Odontol Scand 2004, 62:258-263. PubMed Abstract | Publisher Full Text OpenURL
  251. Stomberg R, Langworth S: Mercury in dental-filling materials – an updated risk analysis in environmental medical terms. The dental Material Commission – Care and Consideration. In Edited by Berlin M. Sweden. 2003, 19.(1998):
  252. Faustman EM, Silbernagel SM, Fenske RA, Burbacher T, Ponce RA: Mechanisms underlying children’s susceptibility to environmental toxicants. Environ Health Perspect 2000, 108:13-21. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  253. Cheuk DK, Wong V: Attention-deficit hyperactivity disorder and blood mercury level: a case control study in Chinese children. Neuropediatrics 2006, 37:234-240. PubMed Abstract | Publisher Full Text OpenURL
  254. Desoto MC, Hitlan RT: Blood levels of mercury are related to diagnosis of autism: a reanalysis of an important data set. J Child Neurol 2007, 22:1308-1311. PubMed Abstract | Publisher Full Text OpenURL
  255. Adams JB, Romdalvik J, Ramanujam VM, Legator MS: Mercury, lead, and zinc in baby teeth of children with autism versus controls. J Toxicol Environ Health 2007, 70:1046-1051. Publisher Full Text OpenURL
  256. Evans TA, Siedlak SL, Lu L: The autistic phenotype exhibits remarkably localized modification of brain protein by products of free radical-induced lipid oxidation. Am J Biochem Biotechnol 2008, 4:61-72. Publisher Full Text OpenURL
  257. Lopez-Hurtado E, Prieto JJ: A microscopic study of language-related cortex in autism. Am J Biochem Biotechnol 2008, 4:130-145. Publisher Full Text OpenURL
  258. Sajdel-Sulkowska EM, Lipinski B, Windom H, Audhya T, McGinnis W: Oxidative stress in autism: elevated cerebellar 3-nitrotyrosine levels. Am J Biochem Biotechnol 2008, 4:73-84. Publisher Full Text OpenURL
  259. Bradstreet J, Geier D, Kartzinel J, Adams J, Geier M: A case-control study of mercury burden in children with autistic spectrum disorders. J Am Phys Surg 2003, 8:76-79. OpenURL
  260. Geier DA, Geier MR: A case series of children with apparent mercury toxic encephalopathies manifesting with clinical symptoms of regressive autistic disorders. J Toxicol Environ Health 2007, 70:837-851. Publisher Full Text OpenURL
  261. Geier DA, Geier MR: A prospective study of mercury toxicity biomarkers in autistic spectrum disorders. J Toxicol Environ Health. 2007, 70:1723-1730. PubMed Abstract | Publisher Full Text OpenURL
  262. Adams JB, Baral M, Geis E, Mitchell J, Ingram J, Hensley A, Zappia I, Newmark S, Gehn E, Rubin RA, Mitchell K, Bradstreet J, El-Dahr J: Safety and efficacy of oral DMSA therapy for children with autism spectrum disorders: part B – behavioral results. BMC Clin Pharmacol 2009, 9:17. PubMed Abstract | BioMed Central Full Text | PubMed Central Full Text OpenURL
  263. Geier DA, Kern JK, Geier MR: A prospective study of prenatal mercury exposure from maternal dental amalgams and autism severity. Acta Neurobiol Exp 2009, 69:189-197. OpenURL
  264. Geier DA, Mumper E, Gladfelter B, Coleman L, Geier MR: Neurodevelopmental Disorders, Maternal Rh-Negativity, and Rho(D) Immune Globulins: A Multi-Center Assessment. Neuro Endocrinol Lett 2008, 29:272-280. PubMed Abstract OpenURL
  265. Hornig M, Chian D, Lipkin W: Neurotoxic effects of postnatal thimerosal are mouse strain dependent. Mol Psychiatry 2004, 9:833-845. PubMed Abstract | Publisher Full Text OpenURL
  266. Amin-Zaki L, Majeed MA, Greenwood MR, Elhassani SB, Clarkson TW, Doherty RA: Methylmercury poisoning in the Iraqi suckling infant: a longitudinal study over five years. J Appl Toxicol 1981, 1:210-214. PubMed Abstract | Publisher Full Text OpenURL
  267. Counter SA, Buchanan LH, Ortega F, Laurell G: Elevated blood mercury and neuro-otological observations in children of the Ecuadorian gold mines. J Toxicol Environ Health 2002, 65:149-163. Publisher Full Text OpenURL
  268. Debes F, Budtz-Jorgensen E, Weihe P, White RF, Grandjean P: Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol Teratol 2006, 28:363-75. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  269. Palmer R, Blanchard S, Stein Z, Mandell D, Miller C: Environmental mercury release, special education rates and autism disorder: an ecological study of Texas. Health&Place 2006, 12:203-209. OpenURL
  270. Rury J: Links between environmental mercury special education and autism in Louisiana. PhD thesis. Louisiana State University, Baton Rouge (LA); 2006. OpenURL
  271. Windham GC, Zhang L, Gunier R, Croen LA, Grether JK: Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco Bay area. Environ Health Perspect 2006, 114:1438-1444. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  272. James S, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA: Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 2004, 80:1611-1617. PubMed Abstract | Publisher Full Text OpenURL
  273. James SJ, Slikker W, Melnyk S, New E, Pogribna M, Jernigan S: Thimerosal neurotoxicity is associated with glutathione depletion: protection with glutathione precursors. Neurotoxicology 2005, 26:1-8. PubMed Abstract | Publisher Full Text OpenURL
  274. Autism Research Institute: Treatment options for mercury/metal toxicity in autism and related developmental disabilities. [http://autism.asu.edu/TreatmentOptions.pdf] webcite
  275. Zahir F, Rizwi SJ, Haq SK, Khan RH: Low dose mercury toxicity and human health. Environ Toxicol Pharmacol 2005, 20:351-360. Publisher Full Text OpenURL
  276. Bjorkman L, Pedersen NL, Lichtenstein P: Physical and mental health related to dental amalgam fillings in Swedish twins. Community Dent Oral Epidemiol 1996, 24:260-267. PubMed Abstract | Publisher Full Text OpenURL
  277. Bellinger DC, Needleman HL: Intellectual impairment and blood lead levels. N Eng J Med 2003, 349:500-502. Publisher Full Text OpenURL
  278. DeRouen TA, Martin MD, Leroux BG: Neurobehavioral effects of dental amalgam in children: a randomized clinical trial. JAMA 2006, 295(Suppl 15):1784-1792. PubMed Abstract | Publisher Full Text OpenURL
  279. Buyske S, Williams TA, Mars AE, Stenroos ES, Ming SX, Wang R, Sreenath M, Factura MF, Reddy C, Lambert GH, Johnson WG: Analysis of case-parent trios at a locus with a deletion allele: association of GSTM1 with autism. BMC Genet 2006, 7:8. PubMed Abstract | BioMed Central Full Text | PubMed Central Full Text OpenURL
  280. Chew CL, Soh G, Lee AS, Yeoh TS: Long-term dissolution of mercury from a non-mercury-releasing amalgam. Clin Prev Dent 1991, 13(Suppl 3):5-7. PubMed Abstract OpenURL
  281. UNEP (United Nations Environment Programm Chemicals): Global Mercury Assessment 2002. [http://www.chem.unep.ch/mercury/Report/GMA-report-TOC.htm] webcite
  282. Laks DR: Assessment of chronic mercury exposure within the U.S. population, National Health and Nutrition Examination Survey, 1999-2006. Biometals2009.[Epub ahead of print]PubMed Abstract | Publisher Full Text OpenURL
  283. Hylander L, Goodsite M: Environmental costs of the mercury pollution. Sci Total Environ 2006, 368:352-370. PubMed Abstract | Publisher Full Text OpenURL
  284. Hylander L, Lindvall A, Gahnberg L: High mercury emissions from dental clinics despite amalgam separators. Sci Total Environ 2006, 362:74-84. PubMed Abstract | Publisher Full Text OpenURL
  285. Hylander L, Lindvall A, Uhrberg R, Gahnberg L, Lindh U: Mercury recovery in situ of four different dental amalgam separators. Sci Total Environ 2006, 366:320-336. PubMed Abstract | Publisher Full Text OpenURL
  286. Bender M: Taking a bite out of dental mercury pollution. New England zero Mercury Campaign. [http:/ / mpp.cclearn.org/ wp-content/ uploads/ 2008/ 08/ nezmc_report_card_on_dental_mercury final.pdf] webcite
  287. Bengtsson U: The symbiosis between the dental and industrial communities and their scientific journals. [http://www.gbg.bonet.se/bwf/art/symbiosis.html] webcite
  288. Consumer for Dental Choice: Complaint against FDA. [http://www.toxicteeth.org/natcamp_fedgovt_fda_complaint_Dec07.cfm] webcite2008.
  289. FDI World Dental Federation: FDI participates at WHO/UNEP meeting on future use of materials for dental restoration. [http:/ / www.fdiworldental.org/ content/ fdi-participates-whounep-meeting-fu ture-use-materials-dental-restorati on] webcite2009.
  290. Mercury Policy Project, Bender M: Letter to WHO: WHO meeting report on the future of dental restorative materials. [http:/ / mercurypolicy.org/ wp-content/ uploads/ 2010/ 12/ letter_to_who_amalgam_nov_2010_fina l_final.pdf] webcite2010.
  291. Gruning T, Gilmore AB, McKee M: Tobacco Industry Influence on Science and Scientists in Germany. Am J Public Health 2006, 96:20-32. PubMed Abstract | Publisher Full Text | PubMed Central Full Text OpenURL
  292. Hardell L, Walker MJ, Walhjalt B, Friedman LS, Richter ED: Secret ties to industry and conflicting interests in cancer research. Am J Ind Med 2007, 50:227-233. PubMed Abstract | Publisher Full Text OpenURL
  293. Bohm SR, Dian Z, Gilman DS: Maximizing profit and endangering health: corporate strategies to avoid litigation and regulation. Int J Occup Environ Health 2005, 11:338-348. PubMed Abstract OpenURL
  294. Jacobson MF: Lifting the veil of secrecy from industry funding of nonprofit health organizations. Int J Occup Environ Health 2005, 11:349-55. PubMed Abstract OpenURL
  295. Egilman DS, Bohme SR: Over a barrel: corporate corruption of science and its effects on workers and the environment. Int J Occup Environ Health 2005, 11:331-337. PubMed Abstract OpenURL

Wywiad z Andrew Cutlerem przeprowadzony przez Marka Schauss

Nagrany we wrześniu 2008 roku

http://labinterpretation.com/content/track01-mark-schauss-andrew-cutler

Prawa autorskie do wywiadu posiada Mark Schauss

Schauss: Witam w programie Laboratory Medical Update. Nazywam się Dr. Mark Schauss, w studio jest dzisiaj ze mną Dr. Andrew Cutler. Dr. Cutler ukończył studia w zakresie fizyki na University of California i uzyskał doktorat z chemii na Princeton University. Jest właścicielem licznych patentów i profesjonalnym inżynierem. Jego obszar badawczy obejmował wszystko od alternatywnych źródeł energii do technologii kosmicznej, zanim zajął się kwestią zdrowia. Napisał dwie książki: „Amalgam Illness: Diagnosis and Treatment” oraz “Hair Test

Interpretation: Finding Hidden Toxicities”, które można nabyć przez www.noamalgam.com albo przez Amazon. Witam pana, doktorze Cutler!

Cutler: Cześć. Dziękuję.

Schauss: OK, zaczynamy. Doktorze Cutler, kwestia związku albo jego braku między tiomersalem w szczepionkach a autyzmem przykuwa ostatnio uwagę mediów. Autorzy licznych publikacji twierdzą, że nie ma takiego związku. Czy skomentuje to pan?

Cutler: Wiele innych publikacji potwierdza ten związek. Najświeższy przykład to praca DeSoto i Hitlan w Journal of Child Neurology, listopad 2007, ukazująca, że dane dotyczące poziomu rtęci we krwi i objawów autystycznych jasno potwierdzają, że rtęć powoduje autyzm. Ponadto medycyna stała się w zasadzie sztuką wyzwoloną i gdy zajrzy się na takie miejsca jak strona internetowa University of Washington Medical School można się zorientować, że lekarze nie chcą być technikami. Chcą być przedstawicielami sztuk wyzwolonych. Prowadzi to do sytuacji, że badacze naukowi są niezdolni do prowadzenia badań nad niebezpiecznymi chemikaliami i ich wpływem na ludzi. Nie jest to coś, co potrafiłby przedstawiciel sztuk wyzwolonych. Nie oczekujemy od niego właściwego zastosowania i zrozumienia statystyki. A zatem, jeżeli naprawdę wczytać się w wiele z tych badań, streszczenia i wnioski po prostu nie odpowiadają danym.

 

Schauss: Inne ważne pytanie brzmi: jak może istnieć tyle artykułów potwierdzających zupełnie przeciwne wnioski w tym temacie?

 

Cutler: Tak naprawdę wyjaśnienie jest bardzo proste. Pracę badawczą wykonujesz tylko wówczas, jeśli wiesz co robisz. Większość lekarzy nie ma takich doświadczeń. Potrzebny jest do tego doktorat. Gdy przygotowywałem swoją dysertację, tak samo jak większość kolegów powtarzałem eksperymenty po dziesięć razy, aby ustalić, co zrobiłem nie tak przez pierwsze dziewięć razy i modliłem się, aby za dziesiątym razem wyszło! Najogólniej mówiąc, jeśli chodzi o temat badań na ludziach, to z powodów etycznych masz dostęp tylko do strzępków informacji i jest bardzo łatwo uzyskać dane, które wydają się w porządku, ale jeśli się przez nie przegryziesz, okaże się że nie odzwierciedlają rzeczywistości – wystąpił jakiś błąd systemowy. A potem ludzie biorą te dane, które mogą ale nie muszą cokolwiek znaczyć i stosują wobec nich narzędzia statystyczne. Ale te narzędzia stosuje się tylko wobec losowych błędów, do różnych pomiarów, do rozmiaru grupy kontrolnej. Nie pomogą na błędy systemowe takie jak „czy podmioty pochodziły z właściwej grupy?”, „czy miałeś może pecha, bo ludzie których wybrałeś, byli atypowymi przykładami populacji kontrolnej?” – itp. A potem pojawia się problem sztuk wyzwolonych. Artykuł, o którym wspomniałem (DeSoto) pochodził od jakichś psychologów, którzy akurat znali się na statystyce i przeczytali oryginalny artykuł Ip, Wonga i innych z 2004 roku, którzy twierdzili, że udowodnili, iż rtęć nie powoduje autyzmu. W rzeczywistości niewłaściwie zebrali dane, źle wyliczyli statystykę z tych danych i uzyskali błędne liczby. A psychologowie byli na tyle skrupulatni, że przeliczyli te liczby i uświadomili sobie, że w tym artykule nie ma racji – wnioski nie pochodziły od zebranych danych – i skontaktowali się z autorami artykułu. Nie chcę, aby ktoś pomyślał, że krytykuję Ip i Wonga bo – w przeciwieństwie do wielu innych badaczy, z którymi się kontaktowałem i którzy mówili „och, opublikowaliśmy to i już, idź skocz z mostu” – oni powiedzieli „oczywiście, przekażemy swoje dane każdemu, kto zechce zweryfikować nasze badania”. A DeSoto i Hitlan stwierdzili, że do sprawozdania z badań wkradły się literówki. Przeliczyli to ponownie i przedyskutowali, co oznaczały poprzednie i aktualne wyniki. I w efekcie szeroko cytowany artykuł, który miał pokazać że rtęć nie powoduje autyzmu, tak naprawdę pokazał, że rtęć powoduje autyzm – tylko ludzie niedokładnie go czytali!

Mamy zatem gromadę ludzi, którzy bawią się w “ślepca i słonia” i agencje to finansujące, które mają swoje interesy, niekoniecznie związane z medycyną. Jeśli chodzi o medycynę, mamy Narodowy Instytut Zdrowia (NHI), Centrum Chorób Zakaźnych (CDC) i agencję dopuszczającą do obrotu leki (FDA), dla których – gdyby się okazało, że tiomersal spowodował autyzm – byłby to wielki polityczny cios. Oni zatem płacą ludziom, którzy dochodzą do przeciwnych wniosków. Odbiorcy grantów w różnych obszarach – było tak, gdy ja sam pracowałem na kontrakty – wiedzą, co mają udowodnić. Nie jest to czymś dziwnym w medycynie. Większość z nich udowadnia to, co mają udowodnić. Czasami dane wspierają te wnioski, a czasami nie. W większości przypadków, wysoka na metr sterta artykułów, które dowodzą czemuś przeciwnemu, zostaje streszczona do strony czy dwóch w podręczniku, a kontrowersje wymierają w następnym pokoleniu. W międzyczasie trzeba czytać artykuły w całości, a nie ich streszczenia, a także porównywać je z własnym doświadczeniem a także z doświadczeniami pochodzącymi z wiarygodnych źródeł, od osób, w których artykułach jest dokładnie to, czego sami doświadczyli, aby móc samemu zdecydować, która z tych stert artykułów zasługuje na większe uznanie. A czytanie artykułów medycznych to sztuka. Potrzeba wiele doświadczenia technicznego, aby naprawdę wczytać się w część zawierającą opis eksperymentu i zrozumieć „czy to wynika jedno z drugiego?”, „czy tak się mogło naprawdę zdarzyć?”, „czy nie lepiej po prostu zignorować ten artykuł?” – jeśli nie można domyślić się, co tak naprawdę zrobiono. I w tym kontekście lekarze powinni robić to, za co są najbardziej krytykowani – polegać na dowodach anegdotycznych. Dowody anegdotyczne to podstawa całej nauki, bo jest to obserwacja. „To widziałem”. To tak jak dowód przed sądem: „Ja to widziałem” kontra „ktoś powiedział mi, co widział”.

Z tego wynika, że prawdopodobnie zobaczymy kolejny metrowy stos artykułów polemizujących z tym, czy tiomersal powoduje autyzm czy nie, podczas gdy aktualnie istnieją wszelkie dowody na to, że powoduje. To typowe dla historii nauki i medycyny: wiele czasu wymaga, aby zakończyć debatę.

Schauss: Zatrucie rtęcią wydaje się być w centrum pańskich badań i publikacji. Dlaczego rtęć, doktorze Cutler?

Cutler: Ludzie mogą zostać zatruci na różny sposób. I wszystkie rodzaje zatruć znajdują się wśród klinicznych przypadków, z którymi lekarze mają do czynienia. Z powodu unikalnych własności rtęci, jej przydatności do celów medycznych i technologicznych i braku zrozumienia indywidualnych odmienności biochemicznych – zatrucie rtęcią jest bardzo prawdopodobne. Ponadto z powodu tego, co można określić jako nieracjonalny, niezgodny z nauką dogmat praktyki medycznej, ludzie zatruci rtęcią zwykle nie są diagnozowani wystarczająco wcześnie, więc ich stan się pogarsza zanim trafią do lekarza, który właściwie ich zdiagnozuje. Nadto, ze wszystkich metali rtęć ma najbardziej różnorodne efekty kliniczne, zależne od biochemii konkretnej osoby. To znacznie utrudnia diagnozę, jak również leczenie, gdyż wymaga zastosowania licznych interwencji w celu pomocy zatrutemu pacjentowi. Inne powszechne toksyny to ołów i arszenik; niezbyt powszechne to bizmut, beryl, tal i platyna. Lekarz długo praktykujący zetknie się z nimi wszystkimi. Toksyny, które powodują wiele zamieszania to antymon i aluminium, które są zwykle podwyższone u osób zatrutych rtęcią ale rzadko stanowią podstawową przyczynę zatrucia i organizm oczyszcza się z nich, gdy wydalona zostanie rtęć.

 

Schauss: W pana książce, Hair Test Interpretation: Finding Hidden Toxicities, którą wszyscy nasi słuchacze powinni nabyć na www.noamalgam.com, mówił pan o metodologii opartej na statystyce, która pomoże zinterpretować badanie włosa wykonane w Doctor’s Data, nazywając to regułami obliczeniowymi (“the counting rules”). Moje pytanie brzmi: po co potrzebne są te reguły, czym one są, jak działają i co mogą nam powiedzieć?

 

Cutler: Rtęć jest wyjątkowa spośród innych pierwiastków toksycznych, gdyż powoduje zaburzenia transportu wszystkich minerałów przez membrany komórkowe. To oznacza, że jest wiele osób zatrutych rtęcią, u których poziom rtęci we włosach, krwi czy moczu będzie normalny albo niski. Nie można zbadać tylko poziomu rtęci i określić, czy ktoś jest zatruty czy nie. Gdyby to było takie łatwe, lekarze pierwszego kontaktu mogliby to zbadać i leczyć. Reguły obliczeniowe  to sposób określenia zaburzeń transportu charakterystycznych dla zatrucia rtęcią. Składają się z kilku prostych reguł do obliczenia wyniku w zależności od tego, gdzie znajdują się podziałki na wyniku badania włosa. Na przykład na teście Doctor’s Data Hair Elements, jeżeli pięć lub mniej podziałek w dziale “essential elements” jest po prawej stronie, to wskazuje na duże prawdopodobieństwo zaburzeń gospodarki minerałami. Tak samo jest, jeżeli cztery albo więcej podziałki są na czerwonym polu. Najtrudniejsze jest policzenie, czy jedenaście albo mniej podziałek jest na białych i zielonych polach w środku, zawsze muszę to dokładnie policzyć zamiast szacować wzrokiem. Jak to wszystko liczyć, jest krok po kroku opisane wraz z przykładami w mojej książce o interpretacji badań włosa. (Możecie przeczytać o niej na www.noamalgam.com/hairtestbook.html.) Kiedy gospodarka minerałami jest zaburzona z powodu zatrucia rtęcią, poziomy innych pierwiastków same w sobie nic nie znaczą, chociaż niskie stężenia mają pewne znaczenie. Dlatego osoby zatrute rtęcią często są niewłaściwie diagnozowane z powodu naiwnej interpretacji wyników badań włosa. Jeżeli wystarczyłoby wyłącznie spojrzeć na to co jest “wysoko” i “nisko”, nie trzeba by było mieć dyplomu lekarza, bo każdy mógłby to zrobić. Kiedy gospodarka minerałami jest prawidłowa, wartości danych pierwiastków coś znaczą i trzeba zwracać uwagę na podwyższone wartości wszystkiego, co może być toksyczne. Książka opisuje też, jak poradzić sobie, gdy wyniki testu są niejasne. Jest w niej dokładny opis, jak poszczególne minerały wpływają na organizm i co oznaczają wyniki badań. Na przykład, cynk i wapń we włosie wzrastają, kiedy jest ich niedobór. W książce znajduje się też opis objawów nadmiaru i niedoboru oraz toksyczności wszystkich badanych pierwiastków.

Testy laboratoryjne to nie jest jakiś magiczny sposób na dotarcie do prawdy ostatecznej. Dodają po prostu pewne informacje do tego, co lekarz ustali w drodze wywiadu, badania i obrazu klinicznego. Jako, że zatrucie rtęcią jest łatwo mylone z innymi problemami z powodu specyficznego obrazu klinicznego, badanie włosa jest bardzo pomocne. Inne toksyny mogą być podobne. Na przykład osoby zatrute miedzią i rtęcią mają podobne objawy i na przykład kobiety z objawami napięcia przedmiesiączkowego mogą być zatrute miedzią albo też rtęcią. Badanie włosa odróżni zatrucie rtęcią od zatrucia miedzią i od zatrucia rtęcią i miedzią, a wszystkie te zatrucia inaczej się leczy. Jako, iż określa się w nim poziom 39 pierwiastków, badanie włosa to doskonałe narzędzie. Pozwala szybko wykluczyć diagnozy w sytuacji, kiedy jest jasne, że istnieje problem zatrucia, a potrwałoby wiele godzin wykluczenie innych diagnoz w drodze badania klinicznego.

Jedną z takich sytuacji, gdzie istotne jest wykluczenie innych chorób jest sytuacja, gdy objawy występują nagle, są bardzo różnorodne, czasem są następstwem nagłych zdarzeń, jak np. wypadek samochodowy. Niektórzy pacjenci mają powypadkowe uszkodzenia ciała. Inni są zatruci w stopniu, który był niezauważalny kliniczne aż doszło do stresu wywołanego wypadkiem.

Inną sytuacją jest taka, kiedy pacjent nie może dobrze opisać ani przypomnieć sobie objawów z powodu choroby psychicznej czy zaburzeń rozwojowych.

Ważne jest, aby pamiętać o tym, co oznacza „norma” w testach laboratoryjnych: przy każdym wskaźniku jedna osoba na 20 ma wynik wysoki albo niski. Dlatego interpretując wynik badań włosa, gdzie występuje 39 analizowanych wartości, potrzeba statystycznego podejścia i reguł obliczeniowych aby uniknąć leczenia stanu, który dla danej jednostki jest czymś normalnym.

Schauss: Rozumiem, że często stwierdza Pan, iż testy prowokacyjne z moczu, które mają zbadać obciążenie metalami ciężkimi, są nieprzydatne i nie powinny być rutynowo stosowane. Dlaczego?

Cutler: Stosujemy je z powodów, które nie mają żadnej wartości diagnostycznej. Nikt nigdy nie czyta literatury na temat testów prowokacyjnych, ludzie czytają tylko streszczenia w PubMed. Gdyby naprawdę zapoznali się z literaturą, dostrzegliby tuziny osób, które były całkowicie zdrowe a miały bardzo wysokie wyniki w porównaniu do jakichkolwiek innych wyników obserwowanych w gabinetach lekarzy medycyny alternatywnej. Jeśli wykona się test prowokacyjny u zdrowej osoby i u osoby zatrutej, wyniki są nie do odróżnienia; nie można stwierdzić na podstawie tego, że „wszystko ponad dany wynik oznacza zatrucie, a wszystko poniżej – brak zatrucia”. Poza nieprzydatnością diagnostyczną testy prowokacyjne charakteryzują się znacznym ryzykiem. Nie ma żadnych podstaw, aby akceptować takie ryzyko i nie otrzymać w zamian żadnych informacji. A zatem jedynym powodem stosowania takich testów jest według mnie sytuacji, kiedy firmy ubezpieczeniowe opłacą leczenie tylko, gdy przeprowadzony zostanie test prowokacyjny. Nie jest on przydatny diagnostycznie. Obarczony jest ryzykiem. Jest wiele innych sposobów na zdobycie przydatnych informacji.

Schauss: W swojej książce “Amalgam Illness”, którą szczerze polecam, pokazuje Pan protokół usuwania rtęci, wobec którego jest Pan bardzo zasadniczy. Postuluje Pan niskie dawki kwasu alfa-liponowego i doustnego DMSA podawane co cztery godziny. Inni mówią, że schemat podawania co osiem godzin jest łatwiejszy i równie skuteczny. Dlaczego Pana protokół jest lepszy od innych?

Cutler: Ponieważ mój sprawia, że ludzie czują się lepiej, a inne sprawiają, że ludzie często czują się okropnie i nieodwracalnie gorzej. Jest oparty na fundamentalnych prawach natury, które rządzą substancjami chemicznymi używanymi przez ludzi. Nie jest oparty na tym, jak duże mamy za sobą doświadczenie zawodowe. W zasadzie najprostszy protokół chelatacji jest opisany na tylnej stronie mojej książki o interpretacji włosa. „Amalgam Illness” dotyczy milionów innych symptomów, których nie ma w „Hair Interpretation”. Książka o badaniach włosa to – w uproszczonym opisie – chelatacja, parę innych informacji, wiele przykładów badań włosa. Kwas alfa-liponowy jest najsilniejszym dostępnym chelatorem. Nie jest dobrze opisany w literaturze anglojęzycznej, a umiejętność czytania po rosyjsku wymaga pewnej wiedzy chemicznej. Kinetyka kwasu ALA, DMSA, DMPS jest doskonale zbadana w organizmach ludzkich (przy DMSA również u dzieci). Jeśli spojrzycie na jakąkolwiek standardową książkę o medycynie (Goodman and Gilman’s The

Pharmacological Basis of Therapeutics; or Harrison’s [Principles] of Internal

Medicine; or Goetz’ Textbook of [Clinical] Neurology), będzie tam opisane, jak często podawać lek. W jaki sposób to określić: należy ustalić, jaki jest jego okres półrozpadu i dawać go według tego okresu. Im większe znaczenie mają fluktuacje w poziomie leku we krwi, tym bardziej trzeba trzymać się schematu. Jeżeli fluktuacje mają mniejsze znaczenie, można zmieniać okres podawania leku według wygody. Podstawowe własności farmakologiczne kwasu alfa-liponowego wymagają, aby był on podawany co trzy lub cztery godziny. Trzeba to robić w ten sposób: taki sposób podawania usuwa rtęć z organów wewnętrznych i centralnego układu nerwowego. Podawanie leku rzadziej często prowadzi do koncentracji rtęci w organach wewnętrznych i centralnym układzie nerwowym.

Jedną z rzeczy niedocenianych w medycynie z powodu braku badań technicznych i ilościowych (na korzyść sztuk wyzwolonych, tak by wyuczyć uprzejmych lekarzy) to umiejętność analizy masowej i oszacowania, gdzie znajduje się rtęć (albo ołów albo cokolwiek innego) u osoby zatrutej. W zasadzie gdy pacjent jest zatruty rtęcią, rtęć znajduje się w całym jego ciele, a większość organów jest bardzo podatna na działanie rtęci. A zatem występuje sytuacja, w której ktoś może mieć w sobie 5 albo 10 miligramów rtęci i tylko 100 mikrogramów we wrażliwej części mózgu. Jeśli podasz temu pacjentowi ALA, DMSA czy DMPS według nieprawidłowego schematu (na przykład kwas ALA czy DMSA trzy razy dziennie czy DMPS dożylnie raz w miesiącu czy co drugi dzień), zwiększysz jego wydalanie z tkanki łącznej, przestrzeni międzykomórkowej czy mięśni, ale doprowadzisz do koncentracji w mózgu czy wątrobie. A zatem pacjent, poprzez taki transport rtęci będzie bardziej chory niż wcześniej, pomimo że wydali pewną część rtęci. Aby zapobiec tej redystrybucji, należy podawać chelatory według okresu półrozpadu albo częściej. Dla ALA jest to trzy lub cztery godziny, dla DMSA są to cztery godziny. Dla DMPS jest to osiem godzin. Te kwestie różnią się indywidualnie, zawsze znajdzie się ktoś, u którego ten okres będzie krótszy i u nich sprawdzi się częstsze podawanie – jeśli będzie mniej częste, może im się pogorszyć.

Wielu lekarzy, którzy zalecają podawanie chelatora co 8 godzin albo trzy razy dziennie czynią to raczej dla wygody lekarza a nie pacjenta, bo lekarze, którzy nie do końca rozumieją dlaczego trzeba podawać inaczej albo którzy nie mają w sobie uprzejmości, muszą wykłócać się z pacjentem o to, że „tak, trzeba też wstawać w nocy”. A to kosztuje, bo nie mogą policzyć sobie ekstra wynagrodzenia za czas spędzony na kłótniach z ludźmi. Ale tak naprawdę, jeśli lekarz dobrze to zrozumie, nie jest to problemem. Lekarze, z którymi współpracuję, mówią zwykle coś takiego: „czy wstaje Pan w nocy to toalety?”, ludzie odpowiadają: „Tak” i wówczas lekarze mówią: „cóż, więc do wzięcia leku też trzeba będzie się obudzić, ale nie trzeba będzie wstawać ani nawet siadać, tylko przygotować sobie tabletkę i szklankę wody na stoliku, połknąć tabletkę, obrócić się na drugi bok – to żaden kłopot.” Ludzie będą tak robić.

 

To, czego nie można zmienić i jest podyktowane prawami natury, to częstotliwość podawania chelatora. Jest to konkretna liczba dla każdego chelatora i nie ma sposobu na zmianę tej liczby. Jeśli usłyszycie, że ktoś twierdzi, iż dla tych chelatorów okresy półrozpadu są inne, zignorujcie wszystko co ci ludzie mówią – są tak niezorientowani, że nie wiedzą nawet co oznacza „okres półrozpadu”! To fundamentalne prawo natury określa, jaki jest okres półrozpadu dla ssaków.

 

To, co można zmienić to: rodzaj użytego chelatora, wielkość dawki, jak często go używasz w sensie długości trwania cyklu. Empirycznie ustalono, że ludziom poprawia się przy cyklach trzydniowych i dłuższych. W teorii można zacząć rano, brać dawki do wieczora, przestać na noc i zacząć od nowa – osoby które rak robią, stają się jeszcze bardziej chore. Osoby, które biorą poranną dawkę, biorą je przez cały czas aż do wieczora dnia trzeciego – czują się lepiej. Długość cykli i okresu przerwy między nimi to kwestia empiryczna, zależna od tolerancji danej osoby. Dlatego mówię, aby przeprowadzać to w cyklach (brać przez kilka dni, potem przerwać itd.) gdyż niemal całe doświadczenie z chelatacją na tym się opiera i nie sądzę, aby było sensownym zmieniać wszystko, jako że nie ma zbyt wiele doświadczenia z ciągłą chelatacją. W niektórych przypadkach, gdy ludzie czują się dużo lepiej na chelatacji i powstrzymuje ona pewne uciążliwe objawy, nie było problemu z ciągłą chelatacją. Ale nie jest to powszechnie polecane przez literaturę i w praktyce klinicznej i nie polecam takiego rutynowego działania.

Jak mówiłem, ALA oczyszcza mózg i organy wewnętrzne. DMPS ma dostęp tylko do przestrzeni międzykomórkowej. Nie wyprowadzi rtęci z mózgu. Może przynieść ulgę na wiele sposobów, bo wiele objawów spowodowane jest przez rtęć w reszcie organizmu u średnio zatrutej osoby. Ale dla pełnej, całkowitej ulgi musisz użyć ALA. Jest to najskuteczniejszy chelator – używanie DMPS czy DMSA nie jest niezbędne, choć bardzo pomocne.

Jeśli jesteś zatruty innym niż rtęć metalem, trzeba dobrać właściwy chelator. Może zauważyliście, że nie wspomniałem o najpopularniejszym chelatorze, EDTA. Jest tak dlatego, że nie pomaga on na zatrucie rtęcią, a często szkodzi. Dla innych zastosowań jest przydatny, pomaga na miażdżycę naczyń krwionośnych, ale jeśli ktoś ma problem z rtęcią, nie należy stosować EDTA. Jeśli ktoś jest zatruty ołowiem, najlepiej użyć DMSA, bo DMPS nie odtruwa z ołowiu. Ale DMPS jest za to pomocny w przypadku każdego innego zatrucia. Daje najmniej skutków ubocznych. Jest wygodny, bo bierze się go co osiem godzin. Ważne jest, aby pamiętać okres dawkowania zgodny z prawami natury – co osiem godzin nie oznacza trzy razy dziennie, trzeba te okresy odmierzać zegarkiem. Co trzy godziny nie znaczy osiem razy dziennie, co cztery godziny to nie sześć razy dziennie, trzeba obliczać ten czas według zegarków.

Schauss: Słyszymy, że opisuje Pan raczej doustne chelatory, dlaczego nie dożylne?

Cutler: [wzdycha] Z dwóch bardzo dobrych powodów, pierwszy to taki, że absorpcja wszystkich tych chelatorów przez podawanie doustne jest bardzo dobra i nie ma powodu, aby je wstrzykiwać. Drugi powód jest w zasadzie bardzo interesujący, gdyż dlatego podaje się je często, aby zapobiec zbyt wysokim i niskim koncentracjom we krwi. Kiedy podajesz chelator doustnie, wchłania się on w ciągu godziny czy dwóch i to przesuwa w czasie szczyt absorpcji i przedłuża efektywny okres półrozpadu (kontra teoretyczny okres półrozpadu). A jeśli je wstrzykniesz, bardzo wysoka koncentracja chelatora we krwi będzie miała miejsce tuż po wstrzyknięciu, a potem nagle opadnie on i – o ile nie chcesz zastrzyków co trzy, cztery, sześć czy osiem godzin, czego chyba nikt by nie chciał – nie będziesz podawać chelatora dostatecznie często. A zatem ja wolę podawać je doustnie (albo przezskórnie, chociaż przez to może być więcej efektów ubocznych) zamiast dożylnie. I nawet ludzie z problemami trawiennymi radzą sobie bardzo dobrze przy podawaniu doustnym.

Schauss: Na koniec proszę powiedzieć, jakie inne badania są pomocne przy leczeniu osób zatrutych?

Cutler: Poza innymi testami właściwymi dla danego przypadku, pomocna jest według mnie morfologia krwi z rozmazem. Dość częste są problemy z anemią spowodowaną niedoborem żelaza albo niewłaściwą metylacją, czasem są inne problemy, bywa też neutropenia. Badanie poziomu ferrytyny jest dość użyteczne. Sugeruję osobom, które skarżą się na jakikolwiek rodzaj bólu, letargi, brak motywacji lub popędu, aby zbadały poziom testosteronu. Trzeba go porównać do norm właściwych dla wieku, a nie do norm laboratoryjnych, które są dobre dla 85-latków. U kobiet, prawie zawsze są problemy hormonalne i niezbędny jest panel hormonów płciowych. Cokolwiek, co pozwoli na wyrównanie poziomu hormonów sprawi, że poczują się znacznie lepiej. Bardzo często pacjenci mają problemy z tarczycą, więc pomocne są badania ft3/ft4/TSH. Jeśli wolą, mogą zrobić T3/T4/TSH. Badanie kwasu mocznikowego w osoczu jest bardzo pomocne. Jest obniżony przy zatruciu większością metali ciężkich, a podwyższony przy zatruciu ołowiem. Więc u osoby zatrutej rtęcią, poziom tego kwasu będzie zwykle poniżej 4 [mg/dL]; poczują się lepiej, jeśli podasz im dużo molibdenu. Jeśli są zatruci rtęcią, wynik będzie ponad 6 – może nie być bardzo wysoki, ale wtedy nie trzeba podawać molibdenu, tylko należy podejrzewać zatrucie ołowiem i podawać DMSA.

Inne badania rzadko są użyteczne i raczej odradzam je pacjentom, ale kierując się zaszłościami historycznymi, lekarze często je przepisują. Badanie musi być powiązane z różnymi objawami. Z mojego doświadczenia wynika, że lekarze – mając realistyczny pogląd na temat miałkości swoich umiejętności klinicznych – w dużej mierze polegają na badaniach laboratoryjnych, bo nie wiedzą jak często laboratoria mogą się pomylić i jak mało te wyniki mogą znaczyć [śmieje się]… Ja poświęcam wiele czasu na zachęcanie lekarzy, aby polegali na swoich umiejętnościach badania klinicznego i gdy zobaczą jakiś objaw, który zaprzecza wynikom badań, aby uwierzyli w to, co widzą (poza badaniem włosa, które jest według mnie doskonałe na początek – wspaniałe narzędzie diagnostyczne – pamiętajcie że nie można badać farbowanych włosów lub włosów po trwałej -  osoby z długimi włosami muszą obciąć je przy samej skórze – możesz wykorzystać inne włosy na ciele jeśli nie są farbowane i trzeba pamiętać tylko, aby uwzględnić kiedy urosły; możesz wykorzystać włosy łonowe – wyniki będą wiarygodne, widziałem wiele badań na włosach łonowych i wyniki były identyczne jak badanie włosa z głowy. Nie widziałem wystarczająco wiele badań na włosach spod pachy, aby stwierdzić czy wyniki są wiarygodne, ale podejrzewam że tak jest.)

Ale tak naprawdę to bardzo proste – morfologia, badania hormonów tarczycy, poziom kwasu mocznikowego w osoczu i wyżej wymienione hormony. U ludzi chudych i znerwicowanych należy również zbadać hemoglobinę A1c i stwierdzić, czy nie jest za niski jej poziom i czy nie są oni na granicy niewydolności nadnerczy. Ale jeśli pacjent jest chudy, znerwicowany i skupiony na sobie samym – w zasadzie nie trzeba badać, czy wymaga wspomagania nadnerczy.

Schauss: Pomyślałem, że zainteresuje też naszych słuchaczy kwestia rtęci i porfiryn w moczu.

Cutler: To naprawdę interesująca kwestia. Wiem coś na ten temat. Powstała na ten temat fascynująca literatura. A zatem udzielę długiej odpowiedzi, ale zacznę od krótkiej i ją rozwinę.  Krótka odpowiedź brzmi następująco: bardzo ograniczona wartość diagnostyczna z powodu wysokiego stopnia fałszywych wyników negatywnych. A przyczyną tego jest fakt, że w laboratorium prawdziwy „łańcuch analiz” rozpoczyna się, gdy mocz jest jeszcze w kanałach moczowych. Gdy spotka się z powietrzem, tak naprawdę już wówczas zaczynają się badania i od tego momentu aż do ostatecznych wyników, wszystko ma wpływ na rezultaty. Na większość badań z moczu nie ma to większego wpływu. Problem z porfirynami jest taki, że są one bardzo wrażliwe na oksydację przez powietrze i światło, a zatem jeśli oddasz mocz do wiaderka w pokoju ze światłem fluorescencyjnym, to do czasu gdy weźmiesz pojemnik i przelejesz go do pojemnika i włożysz do lodówki – połowa materiału badawczego przepadła! I to jest poza kontrolą laboratorium – oni nie mogą nic z tym zrobić, sprawdzić tego, wiedzieć co się stało. Jeśli dostarczysz mocz do laboratorium i technik wcześniej nie wykonywał tego testu, w instrukcji ma napisane, że mocz musi być dobrze wymieszany. Jeśli potrząśnie pojemnikiem, zamiast go delikatnie poruszyć w przód i w tył – to potrząsanie zniszczy kolejną część materiału badawczego. Jeśli zrobi to w pokoju ze światłem fluorescencyjnym, zniszczy kolejną połowę. A zatem może być osoba, która ma wysoki poziom porfiryn, a u której badania wyjdą w normie i nie jest to wyjątkowa sytuacja. Jest to zatem bardzo dobry test, jeśli masz zawsze świadomość, że wynik w normie – nawet powtórzony – może być błędny i może być fałszywie negatywny – zawsze są testy fałszywie pozytywne i negatywne, ten ma po prostu ogromnie duże prawdopodobieństwo fałszywej negatywności.

Jest badanie Woodsa et al. 5-karboksyporfyriny specyficznej dla rtęci, badanej aktualnie przez Laboratoire Philippe Auguste we Francji – teoretycznie jest to właściwy test, specyficzny dla rtęci,  ale nie jest dla mnie jasne, co oznaczają ich zakresy referencyjne, co budzi kolejne pytania… Jednakże co do zasady laboratoria głównego nurtu zawsze oferowały badania porfiryn w moczu i jeśli przyjrzeć się tym badaniom, choć nie są specyficzne dla rtęci, jeśli podwyższone są koproporfiryny, pacjent ma rzadką porfirię genetyczną, którą łatwo można wykluczyć. Albo jest to porfiria spowodowana zatruciem, jeśli podwyższona jest uroporfiryna i koproporfiryna – to może oznaczać tylko porfirię spowodowaną zatruciem. Są cztery choroby, które można tym testem wykluczyć oraz 30-40 toksyn, większość nich to metale ciężkie. A zatem, jeśli w badaniu wyszła porfiria spowodowana zatruciem, można szybko wykluczyć parę chorób. Problemem jest to, że nie możesz zdiagnozować w pełni niczego za pomocą tego testu, bo często bywa fałszywie negatywny. W Amalgam Illness opisuję, jak zebrać próbkę i jak się z nią obchodzić, jeśli ktoś chce wykonać ten test. Najlepsze by było, gdyby lekarze sami nauczyli się jak to zrobić i uczyli tego pacjentów oraz pisemnie dawali laboratoriom instrukcje, a pacjent sam przygotowywałby próbkę. Nawet wtedy będą wyniki fałszywie negatywne. Nadto jeśli zbadasz poziom porfiryn we krwi, wielu pacjentów – który mają porfirię spowodowaną zatruciem – będą mieli je lekko podwyższone – ale trudno jest zbadać poziom porfiryn we krwi, nie jest to powszechnie dostępny test. Jeśli martwisz się genetyczną porfirią, należy pamiętać że: w porfiriach genetycznych wynik zwiększony jest około 10 razy powyżej normalnych limitów albo i więcej. Typowo, u chorych występują objawy jako pewne epizody, a poza nimi czują się dobrze. Są dobrze opisane i zbadane czynniki wyzwalające objawy. W porfirii spowodowanej zatruciem, wynik jest podwyższony zwykle 2-4 krotnie i za każdym razem jest taki sam – nie rośnie ani nie maleje. Objawy nie pojawiają się epizodycznie.

Co jest naprawdę interesujące w literaturze… to, o ile dobrze pamiętam, szwajcarskie badanie, które skupiło się na poziomie porfiryn w moczu u dzieci od momentu narodzenia do wieku 18 lat. Wykazano, że przez pierwsze 24 miesiące poziomy porfiryn rosły i malały w powiązaniu z podaniem rtęci w szczepionkach. Badacze stwierdzili, że są to naturalne wariacje związane z rozwojem, ale jest dużo bardziej prawdopodobne, że jest to spowodowane zatruciem poszczepiennym i ma wpływ na całą populację.

A więc, pomimo iż w pewnym sensie jest to użyteczny test, ma pewne ograniczenia kliniczne z powodu dużego prawdopodobieństwa wyników fałszywie negatywnych, które potrafią namieszać w głowie. Lekarze muszą pamiętać – jestem pewien, że większość nich o tym wie – że jak powiedzą pacjentowi: „och, proszę wykonać te badanie, może być wynik w normie ale to nic nie znaczy”, a wynik będzie w normie, pacjent powie „cóż, ten wynik dowodzi, że nie jestem zatruty rtęcią”, nawet jeśli ten wynik kompletnie o tym nie świadczy. A zatem, pomimo że dla lekarzy te badanie może być użyteczne, może osłabić ich zdolność do leczenia pacjenta, który zawsze może powiedzieć: „te inne badania nic nie znaczą, a ja nie jestem tak naprawdę zatruty”. Bo jedyne co powie taki test to to, że pacjent ma jeden z fałszywie negatywnych wyników.

Schauss: Cóż, doktorze Andrew Cutler, dziękuję za to, że podzielił się Pan z nami tymi informacjami i mam nadzieję na współpracę w przyszłości.

Cutler: W porządku. Dziękuję bardzo.

Transkrybowane przez Michaela Rossa, 28 września 2008

Szczepionki zawierające rtęć

SZCZEPIONKI ZAWIERAJĄCE  RTĘĆ (za prof. M. Majewską)‏

 

  • Euvax (Wzw B, Life Sciences, prod. koreańska) – 0,01 % THIM
  • Engerix B (Wzw B, Glaxo) – 0,005% THIM
  • Hepavax – 0,01%
  • D.T.COQ (DTP, Sanofi) – 0,01 % THIM
  • DTP (Biomed, Kraków) – 0,01 % THIM
  • TETRAct-HIB (DTP+Hib) (Sanofi) – 0,01% THIM
  • D – Szczepionka błonicza (Biomed) – 0.01% THIM
  • DT – Szczepionka błoniczo-tężcowa (Biomed) – 0,01% THIM
  • DTP – Szczepionka błoniczo-tężcowo-krztuścowa (Biomed) – 0,01% THIM
  • Szczepionki przeciw grypie (opakowania wielodawkowe) – 0,01 % THIM

 

Wpływ tioli na toksyczność rtęci

Wpływ tioli, dwutioli i wchodzących w interakcje ligand na toksyczność rtęci

James P.K. Rooney

Centre for Synthesis and Chemical Biology, Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland

  1. Wstęp

Toksyczność rtęci jest przedmiotem wzrastającego zainteresowania, jak i pojawiających się kontrowersji w medycynie współczesnej. Chociaż rtęć od setek lat jest znana jako substancja toksyczna, pozostało do wyjaśnienia wiele jeszcze kwestii odnośnie mechanizmów jej wpływu na procesy biochemiczne zachodzące w ciele. Na tle trwającej od dziesięcioleci debaty dotyczącej wykorzystywania rtęci w plombach amalgamatowych, pojawiły się ostatnio kontrowersje w zakresie stosowania zawierającego rtęć środka konserwującego tiomersalu oraz w zakresie ekspozycji na rtęć poprzez konsumpcję ryb. Pojawiły się także spekulacje, czy ekspozycja na metale ciężkie takie jak rtęć może mieć wpływ na etiologię różnych chorób neurodegeneracyjnych, takich jak stwardnienie zanikowe boczne (choroba Lou Gehringa), choroba Alzheimera, stwardnienie rozsiane i choroba Parkinsona (Clarkson 2002; Muter et al., 2004). Nadto coraz więcej zainteresowania poświęca się możliwej roli tiomersalu, zawierającego rtęć w formie etylowanej, w etiologii zaburzeń rozwoju, takich jak autyzm (Geier and Geier 2006, Muter et al. 2004; Parker et al. 2004).

Każda z wyżej wymienionych kwestii odnosi się do przewlekłego zatrucia rtęcią, odnośnie którego zgromadzono bardzo skąpe dane – w tym do ustalenia pozostaje jeszcze maksymalny bezpieczny poziom ekspozycji (Berlin, 2003; Risher and Amler, 2005). Podczas gdy toksykologia kliniczna różnych form ostrego i przewlekłego zatrucia rtęcią została dokładnie opisana w ostatnich pracach (Clarkson, 2002l Clarkson et al. 2003), a przedmiotem innych jest analiza zatrucia rtęcią w aspekcie biologii molekularnej (Bridges and Zalups, 2005; Zalups, 2000), brak jest prac łączących dokonania obydwu tych specjalistycznych kwestii.

Celem tej pracy jest próba odnalezienia takiej zbieżności poprzez rozważenie klinicznych, diagnostycznych i terapeutycznych implikacji wynikających z pogłębionej analizy zatrucia rtęcią w aspekcie biologii molekularnej. Praca skupia się na wpływie tioli, dwutioli i wchodzących w interakcje ligand, takich jak proteiny zawierające cynk i selen, na toksyczność rtęci na poziomie cząsteczkowym (patrz Tabela 1). Zawiera również ocenę wpływu aspektu molekularnego na kliniczną diagnostykę w kierunku zatrucia rtęcią w kontekście przewlekłej długoterminowej ekspozycji na różne formy rtęci i prawdopodobieństwa selektywnej retencji rtęci nieorganicznej w mózgu.

2. Formy rtęci

2.1. Rtęć metaliczna/Hg0

Ekspozycja na rtęć może pochodzić z różnych źródeł, a sama rtęć obecna jest w środowisku w kilkunastu różnych formach. Rtęć metaliczna (Hg0) nie jest dobrze przyswajana w drodze trawienia, ale bardzo dobrze przyswajana jest w drodze inhalacji. Znajduje zastosowanie w termometrach, plombach amalgamatowych oraz kilkunastu innych substancjach używanych w gospodarstwie domowym i przemyśle. Pozostawiona w temperaturze pokojowej rtęć metaliczna przekształca się w opar, który jest doskonale absorbowany przez płuca. Po absorpcji ta forma rtęci jest rozpuszczalna w tłuszczach, ma zdolność przekraczania bariery krew-mózg i łożyska, jak również może uleć – przy udziale nadtlenku wodoru – utlenieniu do formy nieorganicznej (Hg2+), która jest odkładana w mózgu przez wiele lat (Braunwald er al., 2001, Hargreaves et al. 1988, Opitz et al. 1996, Takeuchi et al. 1989, Vahter et al. 1994). Warto zauważyć, że plomby amalgamatowe wydzielają opary rtęci, które są wdychane i absorbowane do układu krwionośnego (Brauwald et al., 2001, Clarkson et. al. 2003).

Tabela 1

Podsumowanie substancji wykorzystywanych w leczeniu zatrucia rtęcią

molekuła Typ Rola w leczeniu zatrucia rtęcią Inne funkcje biologiczne
ZnCynk Minerał Wzmaga produkcję białek wiążących metale, metalotionein, które uważane jest za substancję chroniącą mózg przed ekspozycją na opary rtęci Ma wpływ na syntezę i stabilizację białek, DNA i RNA. Pełni rolę strukturalną w rybosomach i membranach. Reguluje produkcję hormonów sterydowych i białek aktywujących transkrypcję genów. Kluczowy dla produkcji nasienia, umożliwia rozwój w życiu płodowym. Kompetycyjny inhibitor wchłaniania miedzi.
SeSelen Minerał Ma wpływ na dystrybucję i redukcję toksyczności rtęci u zwierząt, jednakże są dowody negatywnych interakcji z dwutiolowymi związkami chelatującymi, jak DMPS i DMSA u zwierząt zatrutych rtęcią W formie selenocysteiny jest składnikiem peroksydazy glutationowej i enzymów dejodynazy. Selen ma wąski indeks terapeutyczny, a jego toksyczna dawka zaczyna się od 400 ug/dzień
NACN-acetyl cysteina Endogeniczny tiol Zwiększa poziom GSH. Niektórzy lekarze wykorzystują ten związek w terapii zatrucia rtęcią, gdyż GSH zwiększa wydalanie rtęci metylowanej z żółcią. Jednakże doświadczalnie udowodniono, że NAC i GSH mają udział w dystrybucji rtęci do mózgu i nerek. Antyoksydant. Dożylna NAC jest odtrutką na przedawkowanie acetaminofenu. W formie wziewnej ma działanie mukolityczne poprzez rozdzielanie dwusiarkowych wiązań w mukoproteinach. Zażywana doustnie chroni przed nefropatią wywołaną przez podanie kontrastu
GSHGlutation Endogeniczny tiol Ma wpływ na wydalanie metyrtęci z żółcią. Uważa się, że międzykomórkowy GSH pełni funkcję ochronną dla komórek. Z drugiej strony są dowody na jego wpływ na absorpcję rtęci nieorganicznej i rtęci metylowanej do nadnerczy Antyoksydant, który działa jako międzykomórkowy neutralizator wolnych rodników. Przy braku enzymu G6PD, brak możliwości regenerowania glutationu w czasie stresu oksydacyjnego prowadzi do rozpadu czerwonych krwinek
ALAKwas alfa-liponowy Endogeniczny dwusiarczek Metabolizowany wewnątrzkomórkowo do DHLA (kwas dihydroliponowy, ditiol). U licznych gatunków ssaków ma działanie chroniące mózg przed zatruciem rtęcią. Istotnym wydaje się rozmiar dawki i ich częstotliwość, niewłaściwe dawkowanie w widoczny sposób zwiększa poziom zatrucia. Ma dostęp do wszystkich tkanek organizmu, łącznie z mózgiem Koenzym w kompleksach enzymów: dehydrogenazy pirogronianowej, dehydrogenazy alfa-ketoglutarowej i dehydrogenazy łańcuchowego alfa-ketokwasu. Zwiększa wewnątrzkomórkowy poziom glutationu. Regeneruje witaminy C i E.
DMPS Syntetyczny ditiol Tworzy mocne wiązania z molekułami rtęci nieorganicznej. Z powodu niskiej masy cząsteczkowej jest łatwo filtrowany przez nerki i wydalany z moczem. Nie chelatuje rtęci z mózgu. Chelatuje inne metale ciężkie, w tym arszenik, ołów i kadm. Chelatuje również minerały takie jak miedź, chrom i cynk. Jest używany w leczeniu choroby Wilsona.
DMSA Syntetyczny ditiol Tworzy mocne wiązania z molekułami rtęci nieorganicznej. Z powodu niskiej masy cząsteczkowej jest łatwo filtrowany przez nerki i wydalany z moczem. Nie chelatuje rtęci z mózgu. Chelatuje inne metale ciężkie, w tym arszenik, ołów i kadm. Chelatuje również minerały takie jak miedź i cynk. Znajduje zastosowanie w medycynie nuklearnej.

2. 2. Rtęć nieorganiczna/Hg2+

Rtęć nieorganiczna znajduje się w licznych produktach kosmetycznych i gospodarstwa domowego (Ozuah, 2000), jak również znajduje zastosowanie w przemyśle. Jest dobrze absorbowana w drodze trawienia i przez skórę. Może przybierać formę metabolitu oparów rtęci metalicznej (przy wchodzeniu do komórki), rtęci metylowanej i etylowanej (Clarkson, 2002). Stosunkowo niewielka ilość rtęci w formie nieorganicznej przekracza barierę krew-mózg, większość zostaje wydalona z moczem lub kałem albo odkłada się w nerkach. Jednakże, rtęć nieorganiczna może przybierać w mózgu formę innych rodzajów rtęci i pozostaje w mózgu przez lata (Takeuchi et al., 1989, Vahter et al. 1994).

2. 3. Rtęć organiczna

Ekspozycja na rtęć organiczną u ludzi zazwyczaj ma miejsce w dwóch formach: rtęć metylowana (CH3Hg+) – z konsumpcji ryb; rtęć etylowana(C2H5Hg+), która jest składnikiem tiomersalu używanego w szczepionkach. Rtęć organiczna może być przedmiotem absorpcji przez płuca, jest również dobrze przyswajana w układzie trawiennym. Tylko niewielkie ilości są absorbowane przez skórę. Bezpieczeństwo tiomersalu jest aktualnie przedmiotem gorącej debaty. Rtęć organiczna bez przeszkód przekracza barierę krew-mózg, łożysko, pojawia się w mleku kobiecym i koncentruje się w nerkach oraz centralnym układzie nerwowym (Braunwald et al., 2001).

Dimetylortęć, (CH3)2Hg, to forma rtęci organicznej spotykana tylko w laboratoriach. Trzeba zauważyć, że jest to bardzo toksyczny związek, który jest w dużej mierze absorbowany przez skórę (nawet rękawiczki lateksowe nie stanowią zabezpieczenia) i łatwo zmienia się w formę oparów. Ekspozycja na ilość odpowiadającą kilku kroplom jest śmiertelna, gdyż prowadzi do degeneracji układu nerwowego (Braunwald et al., 2001, Nierenberg et al., 1998). W roku 1997 dimetylortęć spowodowała śmierć profesora chemii i aktualnie odradza się stosowanie tego związku w laboratoriach, jeżeli możliwe są inne środki (Nierenberg et al., 1998).

3. Eliminacja i biologiczny okres półrozpadu rtęci.

Eliminacja rtęci z ludzkiego ciała zmienia się zależnie od form rtęci, a okres półrozpadu jest zmienny w zależności od organu. Eliminacja rtęci metalicznej ma miejsce przez mocz, kał i wydychane powietrze. Podstawową drogą eliminacji rtęci organicznej jest układ trawienny. Rtęć etylowana jest wydzielana do żółci, ale większość z niej przechodzi cykl enterohepatyczny (Clarkson, 2002).

3.1. Toksykologia i eliminacja rtęci z mózgu

Kwestia toksykologii i eliminacji rtęci z mózgu budzi wiele kontrowersji. Chociaż rtęć nieorganiczna nie ma właściwości pozwalającej na przekraczanie bariery krew-mózg przez dużą ilość tego związku – jej obecność stwierdza się z mózgu zarówno przy zatruciu rtęcią etylowaną, jak i etylowaną (Magos et al., 1985) oraz w przypadkach ekspozycji na opary rtęci związanej z wykonywaniem pracy zawodowej (Nylander et al., 1989; Opitz et al., 1996).

Więcej kontrowersji budzi jednakże kwestia, czy to sama rtęć etylowana, czy raczej rtęć nieorganiczna powstała w wyniku demetylacji rtęci metylowanej mózgu, stanowi bezpośredni czynnik neurotoksyczny w przypadkach zatrucia rtęcią etylowaną. Badania dostarczyły wielu dowodów na korzyść tezy o bezpośredniej toksyczności rtęci metylowanej (Magos et al., 1985). W toku badań poddano szczury działaniu zarówno chlorku rtęci etylowanej (o stężeniu 8.0 i 9.6 mgHg/kg) i chlorku rtęci metylowanej (w stężeniu 8.0 mgHg/kg) drogą gastroskopii. Z drugiej strony, niektóre badania potwierdziły też tezę o bezpośredniej toksyczności rtęci nieorganicznej. Małpom z gatunku Macaca Fascicularis doustnie podano rtęć metylowanej (w stężeniu 50ugHg/kg) (Charleston et al., 1996, 1995; Vahter et al. 1994,1995). Tezę też udowodniono bez żadnych wątpliwości w drodze autopsji osób przewlekle zatrutych rtęcią (Davis et al., 1994; Takeuchi et al., 1989).

Na pierwszy rzut oka badania wydają się prowadzić do sprzecznych wniosków. Ta ewidentna sprzeczność może być wyjaśniona przy użyciu starożytnej maksymy: „Dawka czyni truciznę”. W rezultacie, bezpośrednim toksycznym związkiem w każdym z wyżej opisanych przypadków jest ta forma rtęci, która jako pierwsza odłoży się na poziomie neurotoksycznym. W perspektywie krótkoterminowej, w przypadku podania rtęci metylowanej w dużych dawkach, tak jak w badaniach Magos et al. (1985), bezpośrednim związkiem toksycznym będzie najprawdopodobniej rtęć metylowana, z uwagi na wysokość podanej dawki, która prowadzi do bezpośredniego efektu toksyczności zanim w ogóle może dojść do szerszej demetylacji. Jednakże przy przewlekłej ekspozycji na małe dawki rtęci, jak w badaniach Charleston et al. (1996,1995) i Vahter et al. (1994,1995) bezpośrednim związkiem toksycznym będzie z dużym prawdopodobieństwem rtęć nieorganiczna, z jednej strony z uwagi na długoterminowy proces odkładania się jej w mózgu i wyjątkowo wysoki okres półrozpady i z drugiej strony z uwagi na fakt, iż rtęć metylowana osiąga stabilny stan po roku od ekspozycji i nie kumuluje się dłużej w mózgu, podczas gdy poziomy rtęci nieorganicznej rosły przez cały okres trwania eksperymentu (18 miesięcy).

Trzeba również uwzględnić fakt, iż gdy rtęć nieorganiczna dotrze już do mózgu, jej okres półrozpadu w tym organie jest znacząco dłuższy niż rtęci etylowanej czy metylowanej (Charleston et al., 1996, 1995; Vahter ety al. 1994, 1995). W rezultacie rtęć nieorganiczna ma tendencję do kumulowania się w mózgu przy zatruciu rtęcią metylowaną już po tym, gdy poziom rtęci metylowanej osiągnął stabilny stan (Vahter et al., 1994). Rzeczywiście, wiele badań autopsyjnych przypadków zatrucia oparami rtęci i rtęcią metylowaną doprowadziło do ujawnienia rtęci nieorganicznej w mózgu wiele lat po ustaniu ekspozycji (Davis et al., 1994; Hargreaves et al., 1988; Nylander et al., 1989; Opitz et al., 1996; Takeuchi et al., 1989).

Debata akademicka dotycząca tych zagadnień będzie prawdopodobnie kontynuowana. Niezależnie od tego, uwzględniając istniejące dowody na selektywną retencję rtęci nieorganicznej w mózgu zarówno po doustnej ekspozycji na rtęć metylowaną jak i ekspozycji na opary rtęci oraz uwzględniając fakt, że są to dwie najczęstsze drogi ekspozycji na rtęć w populacji ludzkiej (poprzez konsumpcję ryb i opary rtęci uwalniane z plomb amalgamatowych), jest oczywistym że kumulacja rtęci nieorganicznej w mózgu powstająca z przewlekłej ekspozycji na niskie dawki przez długi okres czasu, niezależnie od pierwotnych form rtęci, na której działanie narażona jest osoba, musi być traktowana jako potencjalne źródło neurotoksyczności u ludzi.

4. Mechanizmy transportu rtęci w ludzkim ciele.

Przynajmniej od wczesnych lat siedemdziesiątych wiadomym jest, że 99% rtęci krążącej w osoczu przyłącza się do grup tiulowych opartych na proteinach i spekulowano, że transport rtęci do poszczególnych organów i jej redystrybucja dotyczy pozostałego 1% rtęci przyłączonej do „zdolnych do dyfuzji tioli” (Clarkson, 1972), czyli np. tioli o niskiej masie cząsteczkowej, które przenikają przez membrany komórek (Lorscheider et al., 1995). W maju 2005 Bridges i Zalups (2005) opublikowali pracę analizującą różne przykłady endogenicznych tioli, które wspomagają transport metali ciężkich. Ich praca skupia się na zjawisku „molekularnego naśladownictwa” i przytacza wiele przykładów, kiedy tiole o niskiej masie cząsteczkowej połączyły się z rtęcią (i innymi ciężkimi metalami) umożliwiły wejście przez rtęć do różnych rodzajów komórek dzięki molekularnemu naśladownictwu. „Molekularne naśladownictwo odnosi się do zjawiska, w którym połączenie się jonów metali do grup nukleofilowych niektórych biomolekuł prowadzi do uformowania kompleksów organiczno-metalicznych, które zachowują się jak strukturalne i/lub funkcjonalne homologi innych endogenicznych biomolekuł albo tych molekuł, do których przyłączyły się jony metali.” (Bridges i Zalups, 2005).

Wydaje się prawdopodobnym, iż rola naśladownictwa molekularnego w transporcie metali ciężkich podsumowana przez Bridgesa i Zalupsa (2005), stanowi istotny dowód kliniczny działania mechanizmów, dzięki którym toksyczne metale ciężkie transportowane są do różnych rodzajów komórek w całym ciele. Warto również dodać, że pozostało jeszcze do odkrycia wiele mechanizmów naśladownictwa molekularnego. W rzeczy samej, Zalups i Ahmad (2005a, b) opublikowali dalsze wyniki badań, które dowodzą, iż N-acetyl-cysteina (NAC) w połączeniu z rtęcią etylowaną i metylowaną oraz homocysteina w połączeniu z rtęcią metylowaną mogą działać jako substraty ludzkich transporterów anionów organicznych-1 (hOAT).

5. Chelatacja

Związki chelatacyjne są stosowane w farmakologicznym leczeniu zatrucia metalami ciężkimi. Chelatory to molekuły, które ściśle wiążą się z metalami obudowując je strukturą pierścienia. Dobry chelator jest toksyczny w niskim stopniu, wiąże się w pierwszej kolejności z metalami ciężkimi o stabilnych stałych stężeniowych i ma wyższy współczynnik wydalania niż endogeniczne związki wiążące metale, w ten sposób faworyzując szybką eliminację metali toksycznych. DMPS i DMSA to związki chelatacyjne oparte na ditiolach, stosowane w leczeniu zatrucia rtęcią. DMPS nie jest aktualnie zatwierdzony przez FDA do użytku klinicznego, chociaż jest stosowany w leczeniu zatrucia rtęcią bez aprobaty FDA (Risher i Amler, 2005). DMSA otrzymał zgodę na stosowanie u dzieci zatrutych ołowiem (Risher i Amler, 2005).

5.1. DMPS (Dimaval, Unithiol) – dimerkaptopropanosulfon

DMPS został zarejestrowany jako lek w Związku Radzieckim w roku 1958, ale stał się dostępny na Zachodzie dopiero w 1978 roku (Aposhian et al., 1995). DMPS jest ditiolem rozpuszczalnym w wodzie. Używa się go w odtruwaniu z arszeniku, ołowiu, rtęci i kadmu, ma również zastosowanie w leczeniu choroby Wilsona (wrodzona wada metabolizmu miedzy, prowadząca do biokumulacji miedzi). DMPS można podać doustnie lub dożylnie. Jest przetwarzany w ludzkim organizmie w acykliczne i cykliczne dwusiarczki (Aposhian et al., 1995). Poprzednio przypuszczano, że DMPS wiąże się z rtęcią w stosunku 1:1, jednak badania przy zastosowaniu spektrometrii rentgenowskiej udowodniły, że taka struktura nie jest możliwa (George et al., 2004). Autorzy ustalili, że konieczne jest zbudowanie bardziej kompleksowej struktury z wykorzystaniem przynajmniej dwóch molekuł DMPS i dwóch atomów rtęci. DMPS nie jest skuteczne w usuwaniu rtęci z mózgu (Aposhian et al., 2003; Bucht and Lauwerys, 1989; George et al., 2004). DMPS chelatuje również minerały – miedź, chrom i cynk (Risher i Amler, 2005).

5.2. DMSA (Succimer, Chemet, Captomer) – kwas 2,3-dimerkatobursztynowy

DMSA, podawane doustnie, jest gwałtownie jednak nie w całości przyswajane. Znajduje zastosowanie w chelatacji ołowiu, arszeniku, kadmu, rtęci i innych metali. Jest gwałtownie i w dużym zakresie metabolizowane i wydalane głównie z moczem, a w małej ilości z żółcią i przez płuca. Ponad 95% DMSA w krwi wiąże się z białkami (głównie z albuminą) i ponad 90% DMSA wydalanego z moczem przybiera formę dwusiarczku z L-cysteiną (Aposhian et al. 1995). Podobnie jak w przypadku DMPS, w przeszłości prezentowano pogląd, że DMSA wiąże się z rtęcią w stosunku 1:1. Jednakże George etal. (2004) również i w tym przypadku odkryli, że taka struktura nie jest możliwa. Stwierdzili, że DMSA formuje zwykle binuklearny kompleks Hg2(DMSA)2 in vitro. DMSA nie jest skuteczne w chelatacji rtęci z mózgu (Aposhian et al., 2003, Bucht i Lauwerysm 1989, George et al., 2004). Efekty uboczne stosowania DMSA obejmują zaburzenia trawienia, wysypkę na skórze i symptomy podobne do grypy. U niektórych pacjentów stwierdzono łagodną, a nawet umiarkowaną neutropenię i podczas terapii zaleca się regularne badania morfologii krwi. Przed terapią należy zbadać funkcje wątroby i nerek (Sweetman, 2002). DMSA jest uważany za najmniej toksyczny z chelatujących merkaptanów (Aposhian et al. 1995). DMSA ma okres półrozpadu równy 3,2 godziny (Aposhian et al., 1992b, Frumkin et al., 2001) i chelatuje również takie minerały jak miedź i cynk (Risher i Amler, 2005).

6. Kwas alfa-liponowy – jego rola w leczeniu zatrucia rtęcią?

6.1. ALA – kwas alfa-liponowy

Kwas alfa-liponowy (ALA) to dwusiarczek, który jest znany jako bardzo silny antyoksydant i stosowany jest szeroko jako suplement diety. Wewnątrzkomórkowo redukowany jest do kwasu dihydroliponowego (DHLA), ditiolu, który ma właściwości antyoksydacyjne. DHLA może być swobodnie transportowane z komórek do przestrzeni międzykomórkowej. Zarówno ALA, jak i DHLA tworzą chelaty z różnymi metalami ciężkimi (Packer et al., 1997, 1995). Podanie ALA zwiększa wewnątrzkomórkowe poziomy GSH o 30-70% (Packer et al., 1997) i ma zdolności regenerujące inne antyoksydanty, takie jak witaminy C i E. W przeciwieństwie do DMSA i DMPS, ALA dociera do wszystkich obszarów centralnego układu nerwowego i nerwów obwodowych (Packer et al., 1997).

Udowodniono, że ALA pełni rolę ochronną przeciwko efektom zatrucia rtęcią u licznych gatunków ssaków, jeśli kwas ten podany zostanie jednocześnie albo tuż po ekspozycji na rtęć (Donatelli, 2955, Grunert, 1960), zakładając że użyto właściwej dawki ALA (niewłaściwie odmierzone dawki zwiększają poziom zatrucia). Grunert (1960) zasugerował, że częstsze podawanie niższych dawek ALA może być również skuteczne w utrzymywaniu stałego poziomu ALA we krwi i efekt ten zaobserwowano u świnek morskich (którym podawano ALA co 4 godziny) ( Donatelli, 1955).

Aposhian et al. (2003) odkryli, że ALA podane samo albo z DMSA nie chelatuje rtęci w nerkach czy mózgu u szczurów poddanych działaniu wielokrotnych dawek oparów rtęci. Jednakże Gregus et al. (1992) wykazał, że podanie ALA szczurom prowadzi do zwiększonego wydalania rtęci nieorganicznej z żółcią (12-37-krotnie). Ten sam efekt nie dotyczy rtęci metylowanej. Gregus et al. (1992) zasugerował, że rtęć nieorganiczna może być wydalana w formie kompleksów DHLA-Hg2+.

Niezbędne są dalsze badania poświęcone ALA jako chelatorowi – w szczególności analiza chelatacji częstymi i niskimi dawkami, zasugerowanej przez Cutlera (1999). Chociaż nie recenzowaną naukowo publikacją, Cutler przekonująco uargumentował istotność częstotliwości podawania chelatora, co wzbudziło zainteresowanie społeczności naukowej. Podczas gdy wydawałoby się, że ALA ma duży potencjał jako chelator rtęci, jasno wynika również z prac Donatelli (1955) i Grunera (1960) że efekt działania ALA przy zatruciu rtęcią zależy od wielkości dawki i odstępu między dawkami w czasie.

7. Interakcje z ligandami i substancje odżywcze mające wpływ na zatrucie rtęcią.

Niewiele istnieje danych na temat wpływu, jakie mogą mieć na zatrucie rtęcią substancje odżywcze – zarówno w aspekcie ochrony przez rtęcią, jak i potęgowania jej działania przez interakcje z ligandami. Uwzględniając to, jaką rolę endogeniczne tiole, takie jak cysteina, odgrywają w transporcie rtęci po ludzkim organizmie, co podsumowali Bridges i Zalups (2005), wydawałoby się, że zróżnicowane poziomy tioli w osoczu prowadzą do zróżnicowanych poziomów retencji rtęci w organach. Rzeczywiście, w jednym z badań suplementacja NAC wyraźnie zwiększyła koncentrację rtęci w mózgu (Aposhian et al. 2003). Rodzi to wątpliwość, czy przyjmowanie z pożywieniem albo suplementami substancji zawierających tiole ma wpływ na transport rtęci do organów, a tym samym na poziom zatrucia. Najnowsze odkrycia dowodzą, że u szczurów ilość tioli to ważny czynnik w dystrybucji i eliminacji rtęci nieorganicznej (Zalups i Lash, 2006). Sugeruje się również, że u ludzi kontrolowanie poziomów cysteiny w osoczu jest istotne dla kontroli objawów i leczeniu zatrucia rtęcią (Cutler, 1999).

7.1. N-Acetyl-cysteina (NAC)/glutation (GSH)

NAC i GSH zasługują na szersze omówienie, gdyż niektórzy lekarze zalecają je jako leki na zatrucie rtęcią. Na pierwszy rzut oka wydawałoby się to logiczną decyzją, gdyż GSH jest związkiem, który ma wpływ na wydalanie rtęci metylowanej z żółcią (Ballatori i Clarkson, 1985), jak również uważa się, że wewnątrzkomórkowe GSH odgrywa rolę w ochronie komórek (Clarkson, 2002). Jednakże, tylko 1% obciążenia rtęcią metylowaną jest eliminowane z przewodu pokarmowego poprzez demetylację spowodowaną przez mikroflorę jelit – pozostała część jest reabsorbowana i przechodzi cykl enterohepatyczny (Clarkson, 2002). Co więcej, odkryto u szczurów, że koniugat rtęci z GSH zostaje faktycznie odkładana w nerkach jako rtęć organiczna (Bridges i Zalups, 2005). Koniugaty rtęci z GSH są konwertowane do koniugatów rtęci z cysteiną przez enzym gamma-glutamyltransferazę oraz cysteinylglicynazę w proksymalnych kanalikach nerkowych, prowadząc do zwiększonego odkładania się rtęci w nerkach. Dowiedziono również, że odkładanie się rtęci metylowanej w nerkach zależy od poziomu GSH (Richardson i Murphy, 1975). Aposhian et al. (2003) wykazał na przykładzie szczurów, które wystawiono na ekspozycję rtęci metalicznej, że NAC w widoczny sposób zwiększył koncentrację rtęci w mózgu. Dodatkowo, niedawno opublikowane wyniki badań Zalupsa i Ahmada (2005b) dowodzą, że koniugaty NAC oraz rtęci metylowanej i nieorganicznej są potencjalnie zdolnym do transportu związkami odkładanymi in vivo w komórkach nabłonka proksymalnych kanalików . Co więcej, ostatni z wymienionych eksperymentów przeprowadzono używając tkanek z nerek psich (MDCK) jednak z udziałem ludzkich transporterów anionów organicznych-1 (hOAT).

Przyjmując nieskuteczność eliminacji rtęci metylowanej przez żółć, znany mechanizm enterohepatyczny dotyczący rtęci metylowanej oraz odkładanie się rtęci w nerkach i mózgu (Bridges i Zalups, 2005; Kerper et al., 1992) (dotyczy rodzajów rtęci wchodzących w kompleksy z tiolami o niskiej masie cząsteczkowej), NAC i GSH wydają się niewłaściwym wyborem terapii zatrucia rtęcią z powodu wysokiego ryzyka redystrybucji rtęci do tych organów.

7. 2. Cynk

Cynk zwiększa w nerkach zwierząt produkcję metalotioneiny, , białka wiążącego metale (Goyer et al., 1995). Metalotioneina jest białkiem o niewielkiej masie cząsteczkowej o dużej zawartości pozostałości cysteiny i metali. Rtęć formuje z metalotioneiną kompleksy, a metalotioneina jest znana jako związek chroniący układ nerwowy przed ekspozycją na opary rtęci (Yoshida et al., 2005). Rtęć nieorganiczna i metaliczna indukuje produkcję metalotioneiny w nerkach, chociaż rtęć metylowana nie czyni tego bezpośrednio ale w oparciu o metabolizowanie się do formy rtęcie nieorganicznej.

7.3. Selen

Selen to pierwiastek, który ma wpływ na dystrybucję rtęci i redukcję zatrucia rtęcią, co wykazano w eksperymentach na zwierzętach (Goyer et al., 1995). Co ciekawe, Hol et al. (2001) wykazał, że poziom selenu we krwi był znacznie niższy u osób, które miały objawy „choroby amalgamatowej” w porównaniu do zdrowych osób z plombami amalgamatowymi.

Istnieją dowody na to, że selen w osoczu tworzy kompleksy z rtęcią nieorganiczną, które następnie łączą się z selenoproteiną-P (Galer et al., 2000 ; Sasakura i Suzuki, 1998), która z kolei zapobiega odkładaniu się rtęci w nerkach (Yamamoto, 1985). Funkcja selenoproteiny-P nie jest dobrze zbadana, jednak warto zaznaczyć, że badacze tej kwestii rozważają trzy możliwe role tej substancji: (1) obrona antyoksydacyjna; (2) rola w transporcie selenu; (3) rola ochronna jako naturalny chelator metali ciężkich (Chen i Berry, 2003).

Zaobserwowano jednak u szczurów, że jednoczesne podawanie selenu (w formie selenitu sodu) oraz związku chelatacyjnego (DMSA lub DMPS) prowadzi do zmniejszonego wydzielania i znacznej redystrybucji rtęci – w szczególności zmniejszeniu rtęci w nerkach i zwiększeniu jej w wątrobie, choć wypada zaznaczyć, że inne organy nie były przedmiotem badań (Juresa et al., 2005). Jako, iż wykorzystywane chelatory (DMSA i DMPS) zwiększają wydalanie rtęci z moczem, a selenoproteina-P zapobiega odkładaniu się rtęci w nerkach, Juresa et al. (2005) zasugerowali, że konkurowanie ligand pomiędzy chelatorami i selenoproteiną-P prowadzi do redystrybucji rtęci i zmniejszonego wydzielania jej z moczem.

Kolejny czynnik komplikujący kwestię związku selenu i zatrucia rtęcią to zwiększanie produkcji GSH w wątrobie przy zmniejszonym poziomie selenu (Hill i Burk, 1985), prowadzący nawet do podwojenia poziomu GSH w osoczu. Jak wcześniej wskazano, GSH ma związek z odkładaniem się rtęci w nerkach, a więc efekt selenu na poziom GSH może mieć również znaczenie dla zatrucia rtęcią.

Warto zauważyć, że istotna jest forma przyjmowanego selenu. Selen w formie selenometioniny jest mniej więcej dwa razy tak biologicznie dostępny jak selenit sodu i dodatkowo zwiększa poziom selenoproteiny-P i poziom selenu w osoczu (Xia et al., 2005) (uwaga: całkowity poziom selenu obejmuje selen związany z proteiną i selenometioninę).

Jak widać, interakcje pomiędzy rtęcią, selenem, cynkiem i tiolami są dość złożone. Przypuszcza się, że przyjmowanie selenu, cynku i tioli odgrywa ważną rolę przy rozpatrywaniu efektów rtęci na organizm człowieka i poziomu wydalania rtęci. Kwestia ta wymaga dalszych badań.

7. 4. Błonnik spożywczy.

Brakuje informacji o wpływie błonnika spożywczego na zatrucie rtęcią. Jednakże, badania in vitro dowiodły, że otręby pszennie mogą skutecznie wiązać rtęć i inne metale ciężkie (Ou et al., 1999). U myszy poddanych ekspozycji na rtęć metylowaną, dieta w 30% składająca się z otrębów doprowadziła do zwiększenia tempa eliminacji rtęci z ciała i do redukcji poziomu rtęci w mózgu (Rowland et al., 1986). Dowiedziono też, że pektyny jabłkowe skróciły okres zatrucia u dzieci powodując zwiększone wydalanie rtęci z moczem (Sobolev et al., 1999).

Autor ten sugeruje potencjalny mechanizm działania, który prowadzi do zwiększenia wydalania rtęci przez błonnik spożywczy. Rtęć metylowana przechodzi intensywny cykl enterohepatyczny (Clarkson, 2002). Jako, iż dowiedziono in vitro że błonnik łączy ze sobą rtęć, a do tego błonnik nie jest przyswajalny, zasugerowano, że błonnik w diecie przerywa cykl enterohepatyczny, wiążąc rtęć i zwiększając tempo jej wydalania.

Co więcej, Gregus et al. (1992) zasugerował, że kwas alfa-liponowy prowadzi do zwiększonego wydalania rtęci nieorganicznej z żółcią w formie kompleksów DHLA-Hg2+. Jako, iż kompleksy te są podobne do organicznych rodzajów rtęci, warto rozważyć, że mogą zostać ponownie absorbowane przez jelita podobnie jak rtęć metylowana. Gdyby tak było, a błonnik byłby zdolny do związania tych kompleksów, zwiększona podaż błonnika mogłaby prowadzić do zmniejszonej reabsorpcji tych kompleksów, a co za tym idzie do zwiększonej skuteczności leczenia i zmniejszenia efektów ubocznych.

8. Diagnostyka zatrucia rtęcią w kontekście roli tioli, ditioli i wchodzących w interakcje ligand.

8.1. Poziomy w krwi i moczu

Przy niedawnej ekspozycji na rtęć, zbadanie poziomów rtęci w krwi i moczu może być użyteczne diagnostycznie i w celu obliczenia właściwej dawki (Clarkson 2002; Risher i Dewoskin, 1999; Risher i Amler, 2005). Jednakże przy ekspozycji przeszłej, przewlekłej albo na niskie dawki rtęci (Rosher i Dewoskin, 1999), poziomy rtęci w krwi i moczu nie odzwierciedlają stopnia zatrucia. Dodatkowo czas odkładania się rtęci w niektórych organach, w szczególności w mózgu (Braunwald et al., 2001, Hargreaves et al., 1988, Opitz et al., 1996, Takeuchi et al. 1989, Vahter et al., 1994) jest o wiele dłuższy niż we krwi. Warto odnotować, że u robotników, narażonych na ekspozycję na duże ilości rtęci (Opitz et al., 1996) po przejściu leczenia, stwierdzono stałe poziomy rtęci w krwi i moczu przez kolejne 3 lata aż do całkowitego uwolnienia organizmu z rtęci. Jednakże po śmierci pacjenta, 17 lat później, stwierdzono w jego mózgu znaczne ilości rtęci . Najwidoczniej w tym przypadku, poziom rtęci w krwi i moczu nie był miarodajnym wskaźnikiem obciążenia organizmu rtęcią (Uwaga: przy pomiarach rtęci w moczu, należy jednocześnie zmierzyć poziom kreatyniny w celu skontrolowania poziomu nawodnienia).

Po pierwsze, co zostało wcześniej omówione, jest możliwe, że poziom tioli, selenu i prawdopodobnie cynku mogą mieć efekt (bezpośredni albo pośredni) na dystrybucję rtęci. Niewiele wiadomo o interakcjach tych związków z chelatorami jak DMSA czy DMPS, chociaż wiadomo, że jednoczesne podanie selenu z DMSA lub DMPS prowadzi do zmniejszonej efektywności chelatorów (Juresa et al., 2005). Aktualne testy prowokacyjne nie uwzględniają w żaden sposób tych istotnych zmiennych.

W swojej pracy o testach prowokacyjnych DMPS Aposhian et al. (1992a) stwierdził „…bardzo znaczącą pozytywną korelację pomiędzy rtęcią wydalaną w moczu dwie godziny po podaniu DMPS

9. Testy prowokacyjne w chelatacji

W testach prowokacyjnych, mierzy się podstawowy poziom metalu w moczu (zwykle jednego z metali, np. rtęci, ołowiu) przed podaniem związku chelatacyjnego, a po pewnym okresie czasu pobiera się drugą próbkę moczu i ponownie mierzy poziom metalu. Poziomy metalu przed i po obciążeniu są następnie porównywane ze sobą jak i istniejącymi normami.

Do wykonywania tego typu testów wykorzystywano zarówno DMPS, jak i DMSA ze zróżnicowanymi rezultatami (Aposhian et al., 1992a; Frumkin et al., 2001; Roels et al. 1991). Podczas gdy niektórzy z autorów skupili się na klinicznym wykorzystaniu testów prowokacyjnych i interpretacji wyników, tłumacząc brak jednoznaczności tych wyników (Risher i Amler, 2005), oczywistym jest że są mechanizmy i założenia dotyczące metodologii samych testów, które należy rozważyć.

Po pierwsze, jak już wcześniej wspomniano, jest wysoce prawdopodobnym, że poziom tioli, selenu i cynku mają wpływ (bezpośredni lub pośredni) na dystrybucję rtęci. Niewiele wiadomo o interakcjach tych związków z chelatorami takimi jak DMPS czy DMSA, chociaż zaobserwowano, że jednoczesne podawania selenu z DMPS lub DMSA prowadzi do zmniejszenia skuteczności chelatorów (Jursa et al., 2005). Aktualnie testy prowokacyjne nie uwzględniają tych współistniejących zmiennych.

W swojej pracy o testach prowokacyjnych DMPS Aposhian et al. (1992a) odkrył „bardzo znaczącą pozytywną korelację pomiędzy rtęcią wydalaną w moczu dwie godziny po podaniu DMPS a ilością plomb amalgamatowych”. Warto zauważyć, że podczas przeprowadzania tego eksperymentu w ścisły sposób kontrolowano dietę uczestników, chociaż zostało to wyraźnie stwierdzone dopiero w późniejszej publikacji (Aposhian et al., 1995). Z klinicznego punktu widzenia testy prowokacyjne są często stosowane przez pacjentów bez wiedzy lekarza (Risher i Amler, 2005), co sugeruje, że wystandaryzowana kontrola dietetyczna nie jest stosowana. Wydaje się uzasadnionym, że ścisła kontrola dietetyczna zastosowana przez Aposhiana et al. (1992a, 1995) mogła w jakimś stopniu zminimalizować (albo wystandaryzować) poziomy kompetycyjnych ligand w osoczu uczestników eksperymentu, a w konsekwencji do bardziej przejrzystych jego wyników.

Po drugie, duże dożylne dawki, zwykle stosowane w testach prowokacyjnych, niosą ze sobą ryzyko redystrybucji rtęci. Jak wcześniej zaobserwowano, chelatory konkurują z innymi ligandami, m.in. enogenicznymi wolnymi tiolami, tiolami łączącymi fragmenty białek oraz metaloproteinami takimi jak selenoproteina-P i metalotioneina. Zaobserwowano taką redystrybucję u szczurów, co wiązało się z kompetycją pomiędzy selenoproteiną-P po podaniu zarówno DMPS jak i DMSA (Juresa et al., 2005). Używając większej dożylnej dawki, większe ilości rtęci są mobilizowane i w ten sposób zwiększa się w przypadku redystrybucji ilość rtęci redystrybuowanej do innych organów. Najgorszym scenariuszem wydaje się redystrybucja rtęci do mózgu, z jednej strony z uwagi na fakt, iż tam ma ona najdłuższy okres półrozpadu (Braunwald et al., 2001, Hargreaves et al., 1988, Opitz et al., 1996, Takeuchi et al., 1989; Vahter et al., 1994), a z drugiej strony z uwagi na niemożność usunięcia jej z mózgu przez DMSA czy DMPS (Aposhian et al., 2003, Bucht i Lauwerys, 1989; George et al., 2004). Co więcej, należy rozważyć, że mogą mieć miejsce uboczne skutki podawania leków i przy tak dużych ich dawkach mogą wystąpić gorsze reakcje na leki.

Po trzecie, testy prowokacyjne są zwykle przeprowadzane u pacjentów z plombami amalgamatowymi. Budzi to wątpliwość, czy związki chelatujące mogą chelatować rtęć z plomb amalgamatowych prowadząc do niedokładnych rezultatów i – co poważniejsze – do zwiększenia obciążenia rtęcią organizmu pacjenta. Autor niniejszej publikacji nie znalazł jakichkolwiek wyników badań dotyczących tej możliwości.

Po czwarte, jako że DMPS i DMSA nie chelatują rtęci z mózgu (Aposhian et al., 2003; Bucht i Lauwrys, 1989; George et al., 2004) testy prowokacyjne oparte na tych związkach nie oddają w sposób dokładny poziomu rtęci w mózgu. Jako, iż mózg jest jednym z głównych organów, w których osadza się na wiele lat rtęć metaliczna i organiczna (Braunwald et al., 2001; Hargreaves et al., 1988; Opitz et al., 1996; Takeuchi et al., 1989; Vahter et al., 1994), jest to istotna wada testów prowokacyjnych.

Po piąte, nie ma określonych norm maksymalnej i minimalnej ekspozycji na rtęć ani żadnego dozwolonego „bezpiecznego” poziomu ekspozycji na rtęć (Berlin, 2003; Risher i Amler, 2005). To oznacza, że wyniki testów prowokacyjnych nie mogą być porównane do żadnych norm i stało się to przyczyną krytyki testów prowokacyjnych (Risher i Amler, 2005). Jest w tym pewna przewrotna logika, gdyż aby ustalić normy dla populacji, należy najpierw opracować dokładny test. Co więcej, uwzględniając fakt, że rtęć jest bardzo toksyczny pierwiastkiem o nieustalonych funkcjach odżywczych, jest powszechna w środowisku (Clarkson et al., 2003), nie ma jasno określonej granicy bezpiecznej ekspozycji (Berlin 2003, Risher i Amler, 2005) i nie ma aktualnie powszechnie zaakceptowanej metody określania poziomu obciążenia organizmu rtęcią, poza autopsją, sam pomysł ustalenia ogólnych norm dotyczących ekspozycji na rtęć wydaje się, w chwili pisania tych słów, całkowicie niepoważnym postulatem.

10. Wnioski

Znaczenie rtęci w rozwoju wielu przewlekłych stanów chorobowych, takich jak stwardnienie zanikowe boczne (choroba Lou Gehringa), autyzm, choroba Alzheimera, stwardnienie rozsiane i choroba Parkinsona pozostaje kwestią kontrowersyjną. Jasnym jest, że wciąż istnieją znaczące luki w wiedzy na temat biologicznych mechanizmów działania różnych rodzajów rtęci na organizm. Wygląda jednak na to, iż osoby cierpiące na wyżej wymienione choroby same podejmują decyzje i poszukują dróg leczenia chelatacyjnego na własną rękę lub za radą swoich lekarzy (Berlin 2003; Risher i Amler, 2005). Jak widać, istnieje pilna potrzeba dalszych badań licznych kluczowych kwestii.

DMPS i DMSA to leki wybierane przy zatruciu rtęcią. Są dowody na to, że nie są one maksymalnie efektywnymi chelatorami (George et al., 2004) i są nieskuteczne w chelatowaniu rtęci z mózgu (Aposhian et al., 2003; Bucht i Lauwerys, 1989; George et al., 2004). Pomimo, iż są mniej toksyczne niż związki chelatujące rajue haj British Anti-Lewisite (BAL) i D-Penicillamine, mają również pewne toksyczne efekty uboczne (w szczególności DMPS). Istnieje potrzeba opracowania bardziej skutecznych i bezpiecznych związków chelatacyjnych, które będą w stanie usunąć rtęć z mózgu.

Aktualnie ALA jest jedynym chelatorem potencjalnie zdolnym do przeniknięcia do centralnego i obwodowego układu nerwowego. Chociaż przy zastosowaniu pewnego konkretnego harmonogramu dawkowania związek ten nie miał właściwości chelatacyjnych (Aposhian et al., 2003), poprzednie badania udowodniły, że działanie ALA zależne jest zarówno od wielkości jak i częstotliwości dawki (Donatelli 1955; Grunert 1960). Dalsze badanie tej kwestii jest niezbędne w celu ustalenia przydatności ALA jako chelatora klinicznego.

Wydaje się oczywistym w wyniku badań Bridgesa i Zalupsa (2005), że tiole endogeniczne, takie jak cysteina, homocysteina, GSH i NAC odgrywają ważną rolę w dystrybucji rtęci w organizmie. Jest to prawdopodobnie bardzo istotne z klinicznego punktu widzenia i należy przeprowadzić dalsze badania w celu ustalenia potencjalnych efektów podaży tioli w diecie i suplementacji na dystrybucję i toksyczność rtęci. Wielu lekarzy doradza stosowanie GSH albo NAC w terapii zatrucia rtęcią – nie wydaje się to działaniem rozsądnym w świetle dostępnych dowodów.

Cynk i selen również wydają się mieć wpływ na dystrybucję rtęci i ochronę przed jej toksycznością. Są to relacje bardzo dynamiczne i aktualnie słabo zrozumiane. Inne pierwiastki również mogą odgrywać ważną rolę, a interakcje cynku i seleny z chelatorami takimi jak DMPS/DMSA nie zostały wystarczająco dokładnie opisane.

Efekt przyjmowania błonnika spożywczego na dystrybucję i eliminację rtęci jest kolejnym dużym nieodkrytym polem badawczym. Kilka istniejących publikacji wskazuje jednakże na rolę błonnika spożywczego jako substancji potencjalnie wzmacniającej eliminację rtęci metylowanej z organizmu. Efekt błonnika spożywczego na eliminację DHLA-Hg2+ nie został dokładnie oznaczony.

Istnieje pilna potrzeba opracowania dokładnej metody diagnozowania zatrucia rtęcią w praktyce klinicznej w przypadku ekspozycji na rtęć – przeszłej, przewlekłej albo w niskich dawkach. Podczas gdy zaleca się w tym zakresie badanie poziomu rtęci w moczu i we krwi (Risher i Amler, 2005), są to testy użyteczne jedynie w przypadku niedawnej ekspozycji na rtęć i nie odzwierciedlają poziomu rtęci w mózgu. Aktualne testy prowokacyjne są niedokładne i z powodu stosowanych w nich dużych dawkach, niosą ze sobą ryzyko redystrybucji rtęci i efektów ubocznych na stosowane leki. Nie jest również zrozumiałe, jaki efekt będzie miało użycie związku chelatacyjnego u pacjenta z plombami amalgamatowymi.

Nie zostały również określone normy dla obciążenia organizmu rtęcią i bezpieczny poziom ekspozycji na rtęć. Przy braku dokładnych testów klinicznych pomysł określenia takich norm ma i tak niewielkie znaczenie. Co więcej, podczas gdy cała debata skupia się na bezpieczeństwie plomb amalgamatowych, stosowania tiomersalu i spożycia ryb zawierających rtęć oraz możliwej roli rtęci w niektórych chorobach przewlekłych, wydawałoby się logicznym opracowanie w pierwszej kolejności dokładnej metody określania poziomu rtęci w organizmie u zatrutych osób, gdyż bez tego nie będzie możliwe rozwikłanie innych kwestii.

Uwzględniając możliwość, że rtęć może mieć duże znaczenie w przebiegu licznych chorób, należy pilnie odpowiedzieć na wszystkie pytania dotyczące kwestii rtęci. Oczywistym jest, że tiole, ditiole, składniki odżywcze i interakcje z ligandami odgrywają ważną rolę w toksykologii rtęci. Lepsze zrozumienie roli tych cząsteczek może być kluczowe dla opracowania lepszych testów klinicznych zatrucia rtęcią i być może również dla opracowania bardziej skutecznych protokołów leczenia zatrucia rtęcią.

Oświadczenie dotyczące konfliktu interesów

Nie istnieje konflikt interesów.

Podziękowania

Dziękuję za wsparcie profesora Kevina Nolana z Royal College of Surgeons w Irlandii oraz całego Royal College of Surgeons w Irlandii

Bibliografia

  1. Aposhian, H.V., Bruce, D.C., Alter, W., Dart, R.C., Hurlbut, K.M., Aposhian, M.M., 1992a. Urinary mercury after administration of 2,3-dimercaptopropane-1-sulfonic acid: correlation with dental amalgam score. FASEB J. 6, 2472-2476.
  2.  Aposhian, H.V., Maiorino, R.M., Gonzalez-Ramirez, D., Zuniga-Charles, M., Xu, Z., Hurlbut, K.M., Junco-Munoz, P., Dart, R.C., Aposhian, M.M., 1995. Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology 97, 23-38.
  3.  Aposhian, H.V., Maiorino, R.M., Rivera, M., Bruce, D.C., Dart, R.C., Hurlbut, K.M., Levine, D.J., Zheng, W., Fernando, Q., Carter, D., et al., 1992b. Human studies with the chelating agents, DMPS and DMSA. J. Toxicol. Clin. Toxicol. 30, 505-528.
  4.  Aposhian, H.V., Morgan, D.L., Queen, H.L., Maiorino, R.M., Aposhian, M.M., 2003. Vitamin C, glutathione, or lipoic acid did not decrease brain or kidney mercury in rats exposed to mercury vapor. J. Toxicol. Clin. Toxicol. 41, 339-347.
  5.  Ballatori, N., Clarkson, T.W., 1985. Biliary secretion of glutathione and of glutathione-metal complexes. Fundam. Appl. Toxicol. 5, 816-831.
  6.  Berlin, M., 2003. Mercury in dental-fillings materials – an updated risk analysis in environmental medical terms. The Dental Material Commision – Care and Consideration.
  7.  Braunwald, E., Fauci, A.S., Kasper, D.L., Hauser, S.L., Longo, D.L., Jameson, J.L., 2001. Harrison’s Principles of Internal Medicine.McGraw-Hill, pp. 467-469, 2592-2593, 2602.
  8.  Bridges, C.C., Zalups, R.K., 2005. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 204,274-308.
  9.  Buchet, J.P., Lauwerys, R.R., 1989. Influence of 2,3-dimercaptopropane-1-sulfonate and dimercaptosuccinic acid on the mobilization of mercury from tissues of rats pretreated with mercuric chloride, phenylmercury acetate or mercury vapors. Toxicology 54, 323-333.
  10.  Champe, P.C., Harvey, R.A., Ferrier, D.R., 2005. Lippincott’s Illus-trated Reviews: Biochemistry, 146. Lippincott Williams & Wilkins, pp. 108-110, 146, 264.
  11.  Charleston, J.S., Body, R.L., Bolender, R.P., Mottet, N.K., Vahter, M.E., Burbacher, T.M., 1996. Changes in the number of astrocytes and microglia in the thalamus of the monkey Macaca fascicularis following long-term subclinical methylmercury exposure. Neuro-toxicology 17, 127-138.
  12.  Charleston, J.S., Body, R.L., Mottet, N.K., Vahter, M.E., Burbacher, T.M., 1995. Autometallographic determination of inorganic mer-cury distribution in the cortex of the calcarine sulcus of the monkey Macaca fascicularis following long-term subclinical exposure to methylmercury and mercuric chloride. Toxicol. Appl. Pharmacol. 132, 325-333.
  13.  Chen, J., Berry, M.J., 2003. Selenium and selenoproteins in the brain and brain diseases. J. Neurochem. 86, 1-12.
  14.  Clarkson, T.W., 1972. The pharmacology of mercury compounds. Annu. Rev. Pharmacol. 12, 375-406.
  15.  Clarkson, T.W., 2002. The three modern faces of mercury. Environ. Health Perspect. 110 (Suppl. 1), 11-23
  16.  Clarkson, T.W., Magos, L., Myers, G.J., 2003. The toxicology of mercury—current exposures and clinical manifestations. N. Engl. J. Med. 349, 1731-1737.
  17.  Cutler, A., 1999. Amalgam Illness: Diagnosis and Treatment. Self-Published, pp. 195-196, 199-208.
  18.  Davis, L.E., Kornfeld, M., Mooney, H.S., Fiedler, K.J., Haaland, K.Y.,Orrison, W.W., Cernichiari, E., Clarkson, T.W., 1994. Methylmercury poisoning: long-term clinical, radiological, toxicological, and pathological studies of an affected family. Ann. Neurol. 35,680-688.
  19.  Donatelli, L., 1955. Internal Symposium on Thioctic Acid, Naples.
  20.  Frumkin, H., Manning, C.C., Williams, P.L., Sanders, A., Taylor, B.B., Pierce, M., Elon, L., Hertzberg, V.S., 2001. Diagnostic chelation challenge with DMSA: a biomarker of long-term mercury expo-sure? Environ. Health Perspect. 109, 167-171.
  21.  Gailer, J., George, G.N., Pickering, I.J., Madden, S., Prince, R.C., Yu,E.Y., Denton, M.B., Younis, H.S., Aposhian, H.V., 2000. Structural basis of the antagonism between inorganic mercury and selenium in mammals. Chem. Res. Toxicol. 13, 1135-1142.
  22.  Geier, D.A., Geier, M.R., 2006. Early downward trends in neurode-velopmental disorders following removal ofthimerosal-containing vaccines. J. Am. Physicians Surgeons 11, 8-13.
  23.  George, G.N., Prince, R.C., Gailer, J., Buttigieg, G.A., Denton, M.B.,Harris, H.H., Pickering, I.J., 2004. Mercury binding tothe chelation therapy agents DMSA and DMPS and the rational design ofcustom chelators for mercury. Chem. Res. Toxicol. 17, 999-1006.
  24.  Goyer, R., Klaassen, C.D., Waalkes, M.P., 1995. Metal Toxicology. Academic Press, pp. 35-37.
  25.  Gregus, Z., Stein, A.F., Varga, F., Klaassen, C.D., 1992. Effect of lipoic acid on biliary excretion of glutathione and metals. Toxicol. Appl.Pharmacol. 114, 88-96.
  26.  Grunert, R.R., 1960. The effect of DL-alpha-lipoic acid on heavy-metal intoxication in mice and dogs. Arch. Biochem. Biophys. 86,190-194.
  27.  Hargreaves, R.J., Evans, J.G., Janota, I., Magos, L., Cavanagh, J.B., 1988. Persistent mercury in nerve cells 16 years after metal-lic mercury poisoning. Neuropathol. Appl. Neurobiol. 14, 443­452.
  28.  Hill, K.E., Burk, R.F., 1985. Effect of selenium deficiency on the disposition of plasma glutathione. Arch. Biochem. Biophys. 240,166-171.
  29.  Hol, P.J., Vamnes, J.S., Gjerdet, N.R., Eide, R., Isrenn, R., 2001. Dental amalgam and selenium in blood. Environ. Res. 87, 141-146.
  30.  Juresa, D., Blanusa, M., Kostial, K., 2005. Simultaneous administra-tion of sodium selenite and mercuric chloride decreases efficacy of DMSA and DMPS in mercury elimination in rats. Toxicol. Lett. 155, 97-102.
  31.  Kerper, L.E., Ballatori, N., Clarkson, T.W., 1992. Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am. J. Physiol. 262, R761-R765.
  32.  Lorscheider, F.L., Vimy, M.J., Summers, A.O., 1995. Mercury expo-sure from “silver” tooth fillings: emerging evidence questions a traditional dental paradigm. FASEB J. 9, 504-508.
  33.  Magos, L., Brown, A.W., Sparrow, S., Bailey, E., Snowden, R.T., Skipp, W.R., 1985. The comparative toxicology of ethyl- and methylmer-cury. Arch. Toxicol. 57, 260-267.
  34.  Mutter, J., Naumann, J., Sadaghiani, C., Walach, H., Drasch, G., 2004.Amalgam studies: disregarding basic principles of mercury toxicity. Int. J. Hyg. Environ. Health 207, 391-397.
  35.  Nierenberg, D.W., Nordgren, R.E., Chang, M.B., Siegler, R.W., Blayney, M.B., Hochberg, F., Toribara, T.Y., Cernichiari, E., Clark-son, T., 1998. Delayed cerebellar disease and death after accidental exposure to dimethylmercury. N. Engl. J. Med. 338, 1672-1676.
  36.  Nylander, M., Friberg, L., Eggleston, D., Bjorkman, L., 1989. Mercury accumulation in tissues from dental staff and controls in relation to exposure. Swed. Dent. J. 13, 235-243.
  37.  Opitz, H., Schweinsberg, F., Grossmann, T., Wendt-Gallitelli, M.F., Meyermann, R., 1996. Demonstration of mercury in the human brain and other organs 17 years after metallic mercury exposure. Clin. Neuropathol. 15, 139-144.
  38.  Ou, S., Gao, K., Li, Y., 1999. An in vitro study of wheat bran binding capacity for Hg, Cd, and Pb. J. Agric. Food Chem. 47, 4714-4717.
  39.  Ozuah, P.O., 2000. Mercury poisoning. Curr. Probl. Pediatr. 30,91-99.
  40.  Parker, S.K., Schwartz, B., Todd, J., Pickering, L.K., 2004. Thimerosal-containing vaccines and autistic spectrum disorder: a critical review of published original data. Pediatrics 114, 793-804.
  41.  Packer, L., Tritschler, H.J., Wessel, K., 1997. Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic. Biol. Med. 22, 359-378.
  42.  Packer, L., Witt, E.H., Tritschler, H.J., 1995. Alpha-lipoic acid as a biological antioxidant. Free Radic. Biol. Med. 19, 227-250.
  43.  Richardson, R.J., Murphy, S.D., 1975. Effect of glutathione deple-tion on tissue deposition of methylmercury in rats. Toxicol. Appl. Pharmacol. 31, 505-519.
  44.  Risher, J.F., Amler, S.N., 2005. Mercury exposure: evaluation and intervention the inappropriate use ofchelating agents in the diagno-sis and treatment of putative mercury poisoning. Neurotoxicology 26, 691-699.
  45.  Risher, J., Dewoskin, R., 1999. Toxicological profile for Mercury. In: Services, U.D. O. H. A. H. (Ed.), Agency for Toxic Substances and Disease Registry.
  46.  Roels, H.A., Boeckx, M., Ceulemans, E., Lauwerys, R.R., 1991. Urinary excretion of mercury after occupational exposure to mercury vapour and influence of the chelating agent meso-2,3-dimercaptosuccinic acid (DMSA). Br. J. Ind. Med. 48, 247-253.
  47.  Rowland, I.R., Mallett, A.K., Flynn, J., Hargreaves, R.J., 1986. The effect of various dietary fibres on tissue concentration and chemi­cal form of mercury after methylmercury exposure in mice. Arch.Toxicol. 59, 94-98.
  48.  Sasakura, C., Suzuki, K.T., 1998. Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P. J. Inorg. Biochem. 71, 159-162.
  49.  Sobolev, M.B., Khatskel, S.B., Muradov, A., 1999. Enterosorption by nonstarch polysaccharides as a method of treatment of children with mercury poisoning. Vopr. Pitan. 68, 28-30. Sweetman, S., 2002. Martindale: The Complete Drug Reference. Pharmaceutical Press, pp. 1024-1026.
  50.  Takeuchi, T., Eto, K., Tokunaga, H., 1989. Mercury level and his-tochemical distribution in a human brain with Minamata disease following a long-term clinical course of twenty-six years. Neuro-toxicology 10, 651-657.
  51.  Tepel, M., Van der giet, M., Schwarzfeld, C., Laufer, U., Liermann, D., Zidek, W., 2000. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N. Engl. J. Med. 343 (3), 180-184.
  52.  Vahter, M., Mottet, N.K., Friberg, L., Lind, B., Shen, D.D., Burbacher, T., 1994. Speciation of mercury in the primate blood and brain following long-term exposure to methyl mercury. Toxicol. Appl. Pharmacol. 124, 221-229.
  53.  Vahter, M.E., Mottet, N.K., Friberg, L.T., Lind, S.B., Charleston, J.S., Burbacher, T.M., 1995. Demethylation of methyl mercury in dif-ferent brain sites of Macaca fascicularis monkeys during long-term subclinical methyl mercury exposure. Toxicol. Appl. Pharmacol. 134, 273-284.
  54.  Xia, Y., Hill, K.E., Byrne, D.W., Xu, J., Burk, R.F., 2005. Effectiveness of selenium supplements in a low-selenium area of China. Am. J. Clin. Nutr. 81, 829-834.
  55.  Yamamoto, I., 1985. Effect of various amounts of selenium on the metabolism of mercuric chloride in mice. Biochem. Pharmacol. 34, 2713-2720.
  56.  Yoshida, M., Watanabe, C., Horie, K., Satoh, M., Sawada, M., Shi-mada, A., 2005. Neurobehavioral changes in metallothionein-null mice prenatally exposed to mercury vapor. Toxicol. Lett. 155, 361-368.
  57.  Zalups, R.K., 2000. Molecular interactions with mercury in the kidney. Pharmacol. Rev. 52 (1), 113-143.
  58.  Zalups, R.K., Ahmad, S., 2005a. Handling of the homocysteine S-conjugate of methylmercury by renal epithelial cells: role of organic anion transporter 1 and amino acid transporters. J. Pharmacol. Exp. Ther. 315, 896-904.
  59.  Zalups, R.K., Ahmad, S., 2005b. Transport of W-acetylcysteine S-conjugates of methylmercury in Madin-Darby canine kidney cells stably transfected with human isoform of organic anion transporter 1. J. Pharmacol. Exp. Ther. 314, 1158-1168.
  60.  Zalups, R.K., Lash, L.H., 2006. Cystine alters the renal and hepatic disposition of inorganic mercury and plasma thiol status. Toxicol. Appl. Pharmacol. 214, 88-97.

Toksyczność miedzi

Toksyczność miedzi

 

Miedź jest pierwiastkiem niezbędnym dla organizmu. Bierze udział w produkcji energii w komórkach, ma wpływ na metabolizm estrogenu. Stymuluje produkcję neuroprzekaźników: epinefryny, norepinefryny i dopaminy. Wraz z enzymem MAO bierze udział w produkcji serotoniny. Niedobór albo nadmiar miedzi powoduje: obciążenie nadnerczy, bezsenność, osteoporozę, choroby serca, raka, migreny, drgawki, przewlekłe infekcje bakteryjne i grzybiczne, choroby dziąseł i zębów, problemy z włosami i skórą oraz kobiecymi organami płciowymi, jak rownież: depresję, zmiany nastrojów, lęki, niepewność, fobie, ataki paniki, przemoc, autyzm, schizofrenię, zaburzenia uwagi.

Stres ma wpływ na zaburzenia miedzi. Stres obniża poziom cynku w organizmie, co prowadzi do kumulacji miedzi. Najlepszym źródłem cynku jest czerwone mięso, dieta wegetariańska uboga jest w cynk, za to zawiera dużo miedzi, która jest w orzechach, fasoli, nasionach i zbożach oraz w wodzie pitnej.

Nadto hormony nadnerczy stymulują wątrobę do produkcji ceruloplazminy, proteiny, która wiąże miedź. Słaba wątroba czy nadnercza mogą powodować więc odkładanie się miedzi w tkankach.

U dzieci nadmiar albo niedobór miedzy może być związany z opóźnieniem rozwoju, zaburzeniami koncentracji, zachowaniem antyspołecznym i hiperaktywnym, autyzmem, problemami z uczeniem się, przewlekłymi infekcjami.

Miedź używana jest w przemyśle do preparatów zabijających bakterie i grzyby. W organizmie również pomaga kontrolować rozrost grzybów, a jej niedobór lub nadmiar sprzyjają przewlekłym infekcjom Candida albicans, które są odporne na wszelkie leczenie.

 

 

 

Rtęć a choroba Alzheimera

Badania dowodzą, że rtęć jest prawdopodobną przyczyną choroby Alzheimera
Business Wire 15-11-2010

Tłumaczenie:

W artykule mającym być opublikowanym 15 listopada (2010r) w kolejnym wydaniu “Dziennika Choroby Alzheimera” (Journal of Alzheimer’s Disease) badacze odkryli, że rtęć jest jedna z prawdopodobnych przyczyn choroby Alzheimera. Rtęć jest jedna z najbardziej naturalnie występujących substancji. Stanowi niebezpieczeństwo dla ludzi może prowadzić do chorób neurodegeneratywnych takich jak Alzheimer. Po systematycznym przeglądzie istniejącej literatury dot. badan eksperymentalnych i klinicznych, badacze z Viadrina European University, Samueli Institute (Virginia, USA), Northeastern University (Boston, MA, USA) i University Hospital Freiburg odkryli ze symptomy i cechy choroby Alzheimera dało się odtworzyć i przyśpieszyć gdy wprowadzono rtęć.

Rtęć mocno wiąże się z selenem, naturalnie występującym metalem w naszej diecie istotnym dla dobrego zdrowia. Białka powiązane z selenem tworzą klasę molekuł które zapobiegają uszkodzeniom i stresowi oksydacyjnemu, który ma miejsce przy aktywności metabolicznej. Stres oksydacyjny prowadzi do śmierci komórek i starzenia. Gdy rtęć wiąże się z selenem, ten proces może być przyspieszony, tak jak inne choroby degeneratywne w mózgu.

Badawcza literatura naukowa wykazuje ze w modelach zwierzęcych i komórkowych dochodzi do reprodukcji cech choroby Alzheimera, gdy poda się rtęć. Przykładowo, jednym z szerzej znanych zastosowań rtęci jest w stomatologicznych wypełnieniach rtęciowych, najczęściej używanych w stomatologii. Badania niskodawkowych ekspozycji, takich jak u dentystów lub ich asystentów, wykazują ze ekspozycja na rtęć jest znacznie skorelowana z problemami neurologiczno-psychologicznymi.

Rtęć może być wprowadzona do organizmu na wiele sposobów, ponieważ paruje w temperaturze pokojowej. Może być przyjęta w postaci lotnej, sięgając bezpośrednio do mózgu, przez nos albo pośrednio przez krew. Następnie przekracza barierę krew-mózg i jest zamknięta w mózgu, gdzie kumuluje się przez długi okres czasu.

Sytuacja przypomina ta z początku lat 70tych dot. palenia: dość eksperymentalnych dowodów istniało, lecz badania na ludziach były wówczas niejednoznaczne i były atakowane prze grupy z określonym interesem ekonomicznym.” mówi Professor Harald Walach, PhD, z Viadrina European University i Samueli Institute Fellow. „Czekanie aż dość niezbitych dowodów się pojawi nie jest najlepszym rozwiązaniem w świetle tego co już wiemy o toksyczności rtęci.

Usunięcie rtęci z obiegu ekologicznego może okazać się najłatwiejszym i najbardziej efektywnym działaniem ochrony zdrowia publicznego przyczyniającym się do prewencji choroby Alzheimera.”

http://www.lef.org/news/LefDailyNews.htm?NewsID=10425&Section=AGING&source=DHB_101116&key=Body+ContinueReading

 

Dlaczego chelatować dzieci?

Andrew Hall Cutler „Amalgam Illness”

Dlaczego chelatować dzieci?

 

Wielu dzieci dotyka zatrucie rtęcią albo innymi toksynami środowiskowymi. Powodują one często opóźnienia w rozwoju, problemy z uczeniem się, autyzm, hiperaktywność, alergie i astmę. Można te schorzenia wyleczyć stosowną detoksykacją a jeśli ma ona miejsce w dzieciństwie, większość deficytów w rozwoju intelektualnym, emocjonalnym i fizycznym można nadrobić poprzez ciągle trwający proces wzrostu, który w naturalny sposób zmienia i poprawia te kwestie.

Niestety wielu lekarzy boi się spróbować czegokolwiek, aby pomóc dzieciom, ze strachu przed odpowiedzialnością za ewentualne następstwa, gdyż mechanizm metabolizmu u dzieci jest zbadany w dużo mniejszym stopniu niż analogiczny mechanizm u osób dorosłych, jak również trzeba dokładnie prześledzić wszystkie wyniki badać aby ustalić, które różnią się od norm z uwagi na młody wiek pacjenta. Dodatkowo, dawki leków dostosowane są do wagi, co wymaga przeliczenia ich przy wypisywaniu recept zamiast wypisywania dokładnie tej samej dawki dla każdej osoby, jak ma to miejsce z dorosłymi.

Jest istotnym, aby wcześnie podjąć leczenie dzieci tak, aby nie przegapić szansy na całkowite wyleczenie związane z naturalnym procesem rozwoju. Dzieci leczą się szybciej i w większym stopniu z wielu schorzeń niż dorośli. Dzieci maja też tę zaletę, że przez cały czas ktoś się nimi zajmuje. Dorośli muszą poświęcać wiele energii na troszczenie się o siebie samych, zarabianie na utrzymanie, organizowanie wielu rzeczy. Dzieci nie mają tych obciążeń. Najlepsze wyjście to odtruwać je wcześnie, podczas gdy wciąż korzystają z zalet wspierającego je środowiska.

Jest jeszcze jeden bardzo dobry powód przemawiający za wczesnym odtruwaniem dzieci. Podczas procesu dojrzewania, również seksualnego i doświadczania wieku młodzieńczego, duże ilości hormonów działają na organizmy dzieci i powodują istotne zmiany. W szczególności, w szybkim tempie rosną i zmieniają się mózgi dzieci. W tym czasie wiele wcześniejszych problemów z uczeniem się czy zachowaniem znika. Jeżeli odtrujesz swoje dziecko ZANIM ten proces się zakończy, jest większa szansa, że osiągnie ono stan normalnego, rozsądnego, dobrze zachowującego się nastolatka. Jeżeli NIE odtrujesz dziecka, może rozwinąć w sobie NOWE problemy z zachowaniem w okresie dojrzewania, a trudniej jest opanować i kontrolować nastolatków niż małe dzieci. Nie przeocz tej szansy przez zbyteczne oczekiwanie!

Najbardziej oczywistą różnicą w aspekcie biochemii u dzieci i dorosłych jest to, że dzieci nie wytwarzają ani nie używają hormonów steroidowych (hormony nadnerczy i hormony płciowe) podczas wczesnych etapów swego życia. Te hormony mają również wpływ na wzrost aż do osiągnięcia wzrostu dorosłego człowieka. Z tego powodu przy leczeniu dzieci najlepiej jest unikać jakichkolwiek hormonów steroidowych, jeżeli jest to możliwe. Zalicza się do nich pregnenolon, DHEA, kortyzol, glukokortykoidy, estrogeny, androgeny, androstenedione, testosteron itp. Nie używaj ich, o ile nie jest to absolutnie konieczne.

Najistotniejszym problemem hormonalnym u dzieci jest niedobór hormonów tarczycowych. Ciche, niemrawe, słabe dzieci, które wolno rosną mają z dużym prawdopodobieństwem obniżone funkcje tarczycy o ile są też inne przesłanki, aby podejrzewać, że są zatrute rtęcią. Jeżeli do tego moczą się w nocy albo w dzień do bardzo późnego wieku, należy przypuszczać, że ich przysadka nie funkcjonuje prawidłowo i trzeba to leczyć, ale badanie TSH jest bezużyteczne dla ustalenia leczenia i jego późniejszego monitorowania.

Inne różnice są następujące: dzieci zużywają więcej pożywienia w stosunku do swojej wagi i dlatego mogą korzystać z większej dawki suplementów niż sugerowałaby to ich waga; żelazo jest dla dzieci bardziej toksyczne niż dla dorosłych i nie należy go używać chyba że są wyraźne wskazania; metabolizm dzieci jest szybszy, więc substancje podawane w małych częstych dawkach, powinny być dawane częściej niż u dorosłych jeżeli dziecko wyraźnie ma z tym jakiś problem; układ odpornościowy u dzieci jest o wiele bardziej aktywny niż u dorosłych; aminokwas arginina jest niezwykle istotny dla dzieci.

DMSA zostało w szczególny sposób zatwierdzone do użytku leczniczego u dzieci zatrutych ołowiem. Jest bezpieczne dla dzieci. W technicznym sensie DMSA zostało zatwierdzone tylko do użytku na dzieciach – stosowanie go przez dorosłych jest „kontrowersyjne”. Należy stosować DMSA u dzieci zatrutych metalami. Po to ten lek został stworzony.

Jeśli masz dziecko i chcesz je odtruć, znajdź lekarza, który naprawdę chce pomóc wyzdrowieć chorym dzieciom i ma otwarty umysł, zamiast takiego, który wybrał pediatrię bo miło jest spotykać z niemalże zdrowymi dziećmi i za bardzo się nimi nie przejmować. Taki lekarz nie musi być pediatrą. Rzadko napotkasz na pediatrę czy lekarza rodzinnego, który poprowadzi Cię przez cały, tak skomplikowany projekt i nie będzie chciał Cię odesłać gdzieś – gdziekolwiek – bo ciężko mu wymyślić, co zrobić dalej.

Rtęć i inne metale ciężkie mają wpływ na emocje. Marlowe dowiódł, że dzieci zaburzone emocjonalnie mają zwiększony poziom rtęci i ołowiu. Zwracaj uwagę na to, jak się czuje Twoje dziecko. Wielu dorosłych z trudnością przyjmuje to, że dziecko może być poważnie zaburzone emocjonalnie i samo sobie z tym nie poradzi. Zdarza się to często przy zatruciu rtęcią. Dzieci nie mają tej dojrzałości, żeby radzić sobie z emocjami. Musisz im w tym pomóc. Naucz się rozmawiać z dzieckiem o jego emocjach, bądź otwarty i akceptuj tak, aby nie wyrobić w nich nawyku mówienia Ci tego, co chcesz usłyszeć i uwierz w to, co dziecko Ci mówi.

Rtęć zaburza działanie nerwu trójdzielnego i może powodować problemy z widzeniem. Jako, że oftalmolodzy (lekarze, którzy zajmują się operacjami oka) nie wiedzą, jak szukać takich zaburzeń i czym one dokładnie są, często są one pomijane i diagnozowane jako deficyty uwagi czy dysleksja. Można to wyleczyć terapią optometryczną, po zakończeniu odtrucia. Ta terapia powinna być wykonana przez optometrę a nie oftalmologa, wówczas bardziej prawdopodobny jest pozytywny jej skutek. Jeżeli po tej terapii jest regres, oznacza to, że trzeba kontynuować odtrucie.

Zwiększona ilość rtęci odpowiada też poziomowi inteligencji w dzieciństwie (Marlowe et al., 1986). Jako, że inteligencja odpowiada za sukces w szkole, w kręgach towarzyskich, w pracy i w ogóle w życiu, sensownym jest odtruwanie dzieci tak wcześnie, jak to możliwe, aby nie musiały nadrabiać zbyt wiele, gdy powrócą im funkcje mózgu. Nie wiadomo, czy zewnętrznie spowodowane deficyty w inteligencji podczas lat dzieciństwa, prowadzą do trwałych deficytów, których nie da się później nadrobić.

Szansa, aby Twoje dziecko było mądrzejsze, zdrowsze, bardziej stabilne emocjonalne i nadgoniło swoje problemy poprzez naturalną ścieżkę rozwoju, warta jest wykorzystania.

Zwykle więcej niż jeden członek rodziny jest zatruty rtęcią. W tym przypadku lepiej nie opóźniać odtruwania wszystkich. Jeżeli oboje dorośli są zatruci, najlepiej aby to zdrowsze opóźniło odtruwanie albo zaczęło bardzo powoli, podczas gdy pozostały dorosły i dzieci mogą odtruwać się szybciej.

 

 

 

 

 

 

Fizjologiczne efekty zatrucia rtęcią

Fizjologiczne efekty zatrucia rtęcią

na podstawie “Amalgam Illness” A. Cutlera:

Są to ogólne uwagi na temat tego, jak rtęć może wpływać na metabolizm. Mają charakter ogólny tak, aby ludzie mogli wiedzieć, co może się z nimi dziać podczas długiego okresu detoksykacji. Jest to ogólny KONSPEKT, którego zadaniem jest krótko WSPOMNIEĆ i POUKŁADAĆ pewne rzeczy.

 

MÓZG

Przewlekłe zatrucie rtęcią dotyka podwzgórza, a za jego pośrednictwem układu hormonalnego, nastroju, uczucia głodu, pamięci, autonomicznego układu nerwowego, tętna, pocenia się, regulacji temperatury i rytmu dobowego. W poważniejszych przypadkach przysadka może również ucierpieć i obniżone są poziomy hormonów, które produkuje.

Nerw trójdzielny, który kontroluje większość mięśni oka również pada ofiarą zatrucia.

Zmysły:

Wzrok – nadwrażliwość na światło, problemy ze skupieniem wzroku, problemy ze zbieżnością obu gałek ocznych na jednym przedmiocie, problemy ze śledzeniem przedmiotu wzrokiem. Upośledzona wrażliwość na kolory.

Powonienie – zaburzone.

Smak – zaburzony

Słuch – uczucie dzwonienia w uszach, problemy w rozumieniu słów i w wyszczególnianiu dźwięków z hałasu.

Zmysł równowagi – wyjątkowo zaburzony.

Emocje – emocje zmieniają się i są jakby spłycone. Prowadzi to do problemów w stosunkach międzyludzkich, niestałość w uczuciach, problemy z zaufaniem innym, podatność na niewinne uwagi, trudność w rozumieniu prawdziwych intencji ludzkich, nieśmiałość, wycofanie i wyjątkowe marnowanie czasu.

Intelekt – powolniejszy, problemy z pamięcią. Największe z pamięcią krótkotrwałą, prowadzą do poczucia mentalnego wyobcowania.

Dopamina jest podwyższona, a receptor dopaminowy D2 jest również stymulowany przez rtęć. Można oczekiwać reakcji podobnych do schizofrenicznych. Wydzielanie TSH przez przysadkę jest nadmiernie stymulowane i może przez jakiś czas nadrobić obniżoną funkcję tarczycy.

Hormony – centralna kontrola nad funkcjami hormonalnymi jest zaburzona (np. CRH i przez to ACTH i przez to kortyzol obniżają się w odpowiedzi na stres zamiast się zwiększać). Zaburzona jest regulacja ciepłoty ciała. Głód nie odpowiada fizjologicznym potrzebom. Może wystąpić nadmierne oddawanie moczu z powodu niskiej wazopresyny.

Autonomiczny system nerwowy – nieodpowiednie pocenie się albo jego brak, zimne dłonie i stopy i ewentualnym mrowieniem i brakiem czucia, przyspieszone tętno itp.

 

UKŁAD ENDOKRYNOLOGICZNY

Rtęć koncentruje się selektywnie w wybranych tkankach układu endokrynalnego i nerwowego.

Tarczyca – jest dotknięta bezpośrednią koncentracją rtęci, prowadzi to do redukcji syntezy PgI2 (jest to cząsteczka sygnalizująca wykorzystywana przez tarczycę). Stymulacja receptora dopaminowego D2 obniża odpowiedź TSH na TRH. Zaburzona jest także konwersja T4 do T3. Jako, że przysadka używa do tej konwersji własnych enzymów, TSH może być w normie mimo występowania niedoczynności tarczycy, którą można jednak zdiagnozować na podstawie fizycznych objawów.

Nadnercza – są dotknięte zarówno bezpośrednią koncentracją rtęci, redukcją syntezy PgI2 oraz zaburzeniami syntezy steroidów. Osoby z niedoczynnością nadnerczy będą miały obniżone ciśnienie krwi. Osoby z paradoksalną reakcją nadnerczy na stres ale wysokim średnim poziomem kortyzolu mają normalne albo wysokie ciśnienie krwi, ale źle reagują na stres. W niedoborze hormonów nadnerczy, zwiększa się wrażliwość na ból oraz zmysły zapachu, dotyku i smaku.

Gonady – dotknięte zmniejszonym wydzielaniem LH/FSH przez nadnercza oraz bezpośrednią koncentracją rtęci, jak również zaburzeniem syntezy steroidów. Androgeny mają wpływ na układ odpornościowy, u kobiet niemal połowa androgenów tworzy się w nadnerczach w odpowiedzi na ACTH więc kobiety z niedoczynnością nadnerczy będą miały niedobór androgenów.

Hormony nadnerczy i gonad są tworzone z cholesterolu i kłopoty mogą być większe, jeżeli poziom cholesterolu jest zbyt niski z powodu problemów z wątrobą.

Trzustka – częste niedobory enzymów trawiennych, co może prowadzić do alergii pokarmowych, złego wchłaniania itp. Problemy w metabolizmie insuliny i glukagonu mogą doprowadzić do hiperglikemii, hipoglikemii, reaktywnej hipoglikemii itp. jak również do przybierania na wadze u niektórych.

 

INTERAKCJE ENDOKRYNOLOGICZNE

Niskie poziomy hormonów tarczycowych prowadzą do obniżonego kortyzolu i nadmiernej reakcji ACTH na stymulatory. W połączeniu z tym, że podczas stresu poziom ACTH spada, postaje ogromna trudność w regulacji rytmu dobowego oraz zaburzeń w funkcjonowaniu – pojawiają się nieoczekiwane cudowne osiągnięcia, a tuż za nimi spektakularne porażki albo nie podejmowanie wyzwań.

Niska funkcja nadnerczy może też obniżyć produkcję hormonów tarczycy, prawdopodobnie z powodu braku receptorów beta-adrenergicznych, które tworzą się w odpowiedzi na kortyzol.

Gdy poziomy hormonów tarczycowych rosną, zwiększa się poziom kortyzolu we krwi i zapotrzebowanie na kortyzol. A zatem przy niedoborze hormonów zajęcie się w pierwszej kolejności albo wyłącznie tarczycą, może pogorszyć funkcje nadnerczy.

Kortyzol zwiększa beta-adrenergiczną wrażliwość wszystkich tkanek. Zwiększa się tętno, lipidy są wypuszczane z komórek tłuszczowych, aminokwasy z mięśni a cukier we krwi – z wątroby.

Kortyzol powoduje, że produkowany jest enzym glutaminosyntetaza, który jest niezbędny do usunięcia amoniaku z mózgu.

Hormony tarczycy zwiększają wrażliwość na katecholaminy, jak również wrażliwość beta-adrenergiczną. Zwiększają one też tempo produkcji neuroprzekaźników.

Hormon wzrostu zwiększa konwersję T4 do T3, aktywnej formy hormonów tarczycowych.

Betabloker propanolol zmniejsza konwersję T4 do T3. Zwiększona wrażliwość beta-adrenergiczna (np. od kortyzolu, tarczycy) zwiększa konwersję T4 do T3. Leki na astmę zwiększają również tę konwersję.

Karbamazepina zwiększa konwersję T4 do T3.

Trzeba o tym pamiętać, aby zrozumieć reakcje jednostki na zatrucie rtęcią i zrozumieć, że podczas terapii hormonalnej mogą mieć miejsce nieprzewidywalne i liczne zmiany.

 

ORGANY

Wątroba – zaburzony metabolizm fazy 1 i 2 pożywienia i leków. Może to skutkować zapaleniem i uszkodzeniem wątroby, jak również zatruciem przez niewłaściwie metabolizowane substancje.

Serce – redukcja zawartości koenzymu Q10 prowadzi do obniżonej produkcji i wykorzystania energii. Zwiększony poziom rodników prowadzi do arteriosklerozy, Może to doprowadzić do zwiększonego ryzyka chorób serca.

Układ pokarmowy – rtęć ma na niego ogromny wpływ. Nagłe zatrucie prowadzi do koncentracji rtęci w tkankach układu pokarmowego i może prowadzić do problemów z trawieniem, złego wchłaniania, przerostu grzybów itp.

Złe wchłanianie – ma konsekwencje dla całego układu. Może być problem z doborem suplementacji. Objawem złego wchłaniania jest niski poziom trójglicerydów i cholesterolu.

Przepuszczalne („cieknące” jelito – powoduje nadwrażliwość odpornościową na składniki pożywienia.

Mięśnie – mogą być osłabione z powodu złej funkcji nadnerczy i złego wchłaniania. Przy hipoglikemii białka z mięśni mogą być mobilizowane aby zapewnić energię dla organizmu. Kortyzol jest niezbędny aby te białka zostały rozłożone, więc osoby ze słabymi nadnerczami są zwykle chude, słabe, choć wydają się umięśnionymi.

Tkanka łączna – jest ofiarą niektórych problemów autoimmunologicznych powodowanych przez rtęć, jak reumatyzm, toczeń itp.

Skóra – zwykle jest sucha podatna na infekcje i zapalenie z powodu oksydacji membran komórkowych. Niedoczynność tarczycy też powoduje, że skóra jest słaba i cienka. Zwiększony kortyzol też osłabia skórę.

Płuca – w pierwszej fazie zatrucia powszechne są częste infekcje płuc z powodu upośledzenia układu odpornościowego. Zmiana funkcji cząsteczek sygnalizujących może doprowadzić do astmy. Niski progesteron może również powodować duszności.

Układ krążenia – może pojawić się arterioskleroza

Krew – rtęć zaburza utlenienie czerwonych krwinek, co po części reguluje epinefryna. Rtęć wpływa też na krzepliwość krwi prowadząc do krwotoków i łatwego sinienia skóry.

 

SYGNAŁY MIĘDZYKOMÓRKOWE

Nadmierne nadtlenki lipidów zaburzają formowanie się PgI2, która jest wykorzystywana przez nadnercza i tarczycę aby produkować hormony jako zapotrzebowanie na konkretne sygnały. Te dwa organy będą zatem bardziej zaburzone niż inne. PgI2 pomaga też w naprawianiu szkód powodowanych przez udary i zawały, więc zredukowany poziom PgI2 zwiększa ryzyko tychże. PgI2 ma wpływ na przepustowość naczyń krwionośnych, redukuje ciśnienie krwi jest częścią systemu kontroli ciśnienia krwi.

Rtęć stymuluje receptory dopaminowe D2, który ma wpływ na zaburzenia psychotyczne. Ta stymulacja może powodować zmiany emocjonalne związane z zatruciem rtęcią. Obniża też funkcje przysadki.

Ta nadmierna stymulacja powoduje bóle głowy, zwiększony apetyt i problemy z brzuchem (dopamina sygnalizuje, że żołądek jest pełen). Organizm radzi sobie z tym obniżając funkcję receptora albo obniżając ilość dopaminy.

Osoby, u których dochodzi do obniżenia funkcji receptora potrzebują dużej ilości różnych bodźców do stymulacji aby funkcjonować, muszą przyjmować suplementy w dużych ilościach i stopniowo z nich rezygnować.

Osoby, u których dochodzi do obniżenia ilości dopaminy, stają się alergiczne i wrażliwe na wszystko, muszą zaczynać od malutkich dawek suplementów i powoli je zwiększać.

Kiedy to wszystko się dzieje, rozchwiane są poziomy TSH i prolaktyny.

Rtęć bezpośrednio wpływa na enzym tworzący drugi przekaźnik – cykliczne AMP, które przenosi sygnały między komórkami przynajmniej w połowie szlaków. Powoduje to zredukowaną i płytszą odpowiedź na stymulację.

Redukując niezbędne kwasy tłuszczowe w membranach komórkowych rtęć redukuje ilość tkanki dostępnej do wytworzenia prostaglandyn, leukotrienów itp., czyli ważnych cząsteczek pozapalnych i antyzapalnych. Prostaglandyny kontrolują reakcje mięśni. Brak równowagi między różnymi rodzajami prostaglandyn prowadzi do fibromialgii. Prostaglandyny odpowiedzialne są też za zwiększenie temperatury ciała przy gorączce, a ich brak ma miejsce w niektórych przypadkach schizofrenii, a zatem niski poziom kwasów tłuszczowych może doprowadzić do zmniejszonej temperatury ciała i zachowań podobnych do schizofrenii.

Poziomy acetylocholiny są zredukowane (prawdopodobnie przez stymulację receptorów D2). Powoduje to problem w poruszaniu się (używaniu mięśni), obniżenie tętna, funkcji pamięci i kojarzenia (leki cholinergiczne pomagają przy chorobie Alzheimera), regulacji wydzielania śluzu i regulowaniu źrenicy oka.

Odpowiedzią niektórych osób na zmniejszony poziom acetylocholiny jest podwyższone regulowanie aktywności receptorów muskarynowych M1. Sprawia to, że dany receptor jest w wystarczający sposób wrażliwy nawet na małe ilości pozostałej acetylocholiny i może funkcjonować. Takie osoby nie będą reagowały na leki zwiększające poziom acetylocholiny jak DMAE. Zwykle duże korzyści przyniesie im przyjmowanie metylowanych substancji takich jak SAMe. Tiamina odwrażliwia receptory M1 i sprawia, że są w równowadze z innymi receptorami. Jedną z funkcji receptorów M1 jest powstrzymanie pocenia się, więc takie osoby nie będą się pocić. Powoduje ona też uwalnianie się kwasu arachidonowego, więc takie osoby będą miały wysokie poziomy leukotrienów i pozapalnych prostaglandyn. Kwas arachidonowy z kolei zwiększa poziomy acetylocholiny, więc te osoby wpadają w pętlę, która sprawia że są nadwrażliwe. Mają zwykle liczne nadwrażliwości na substancje chemiczne i działają na nie suplementy w ekstremalnie niskich dawkach.

Metabolizm dopaminy, epinefryny i norepinefryny zwykle jest zaburzony w jakiś sposób, co powoduje problemy emocjonalne i somatyczne. Kobiety i mężczyźni w różny sposób zużywają norepinefrynę i ta różnica może odpowiadać za przewagę niepokoju i lęków u kobiet zatrutych rtęcią.

Metabolizm tryptofanu również może być zaburzony, a poziomy serotoniny i melatoniny nienormalnie wysokie albo niskie.

Dotknięta jest również synteza steroidów, zmiana dotyczy stosunku między poszczególnymi steroidami, które biorą udział w procesach rozumienia i w zmianach nastroju, jak również kontrolują anabolizm, katabolizm i drugorzędne cechy płciowe.

Rtęć powoduje przyspieszenie wchłaniania glukozy, co prowadzi do hipoglikemii i przybierania na wadze. Wydaje się, że skorygować to może suplementacja chromem.

 

MITOCHONDRIA

Działanie rtęci na mitochondria nie jest dobrze zbadane. Wydaje się jednak, że przewlekłe zatrucie rtęcią dotyka mitochondriów i hamuje ich zdolność do prawidłowej fosforylacji adekwatnej do potrzeb organizmu. Częściowo ma na to wpływ ogólne zatrucie, a częściowo zatrucie konkretnych szlaków, które stają się wrażliwe na niektóre składniki diety (np. tłuszcze utwardzone), a częściowo jest to też efekt nieefektywnego systemu komunikacji międzykomórkowej.

 

PATOLOGIE NA POZIOMIE CZĄSTECZKOWYM

Transport i metabolizm glukozy (cukru we krwi) jest zaburzony przez szereg mechanizmów.

Zaburzony jest proces tworzenia się ATP.

Nadmiernie szybko dochodzi do oksydacji niezbędnych kwasów tłuszczowych.

Cholesterol na początku jest podwyższony a potem opada.

Zaburzone są procesy wykorzystywania wielu witamin, co prowadzi do zwiększonych potrzeb w zakresie suplementacji.

Konwersja hormonu tarczycowego t4 do jego aktywnej formy t3 jest zaburzona bo enzym, który uczestniczy w tej przemianie w swojej aktywnej części posiada selen. Rtęć ma wyjątkowo wysoką skłonność do selenu. Niektóre tkanki wykorzystują krążące w organizmie t3 a niektóre wytwarzają swoje własne, więc może dojść do niedoczynności tarczycy pomimo normalnych poziomów t3 w krwi.

Synteza porfiryn jest zaburzona, co prowadzi do tego, że ciało nie produkuje wystarczającej ilości hemoglobiny dla krwinek czerwonych, enzymów wytwarzających energię w mitochondriach i enzymów detoksykujących substancje chemiczne w wątrobie.

Zaburzony jest metabolizm fazy 1 i 2 w wątrobie. Przyspieszona faza 1 prowadzi do nadwrażliwości na substancje chemiczne. W połączeniu ze spowolnieniem fazy 2 nadwrażliwości te są jeszcze bardziej intensywne.

Aminokwasy – poziomy ich w osoczu mogą różnić się od spodziewanych. Rtęć może mieć wpływ na końcowe produkty przemian metabolicznych, które zużywają niektóre aminokwasy, Tauryna może być zbyt wysoka albo zbyt niska (zbyt niska prowadzi do poczucia niepokoju, jak również zmniejszonego wydzielania żółci co ma wpływ na trawienie i stan nerek). Fenylalamina i tyrozyna mogą również być obniżone albo zbyt wysokie, co ma wpływ na melaninę, hormony tarczycowe oraz neuroprzekaźniki – dopaminę, norepinefrynę i epinefrynę. Tryptofan może być podwyższony lub obniżony, co ma wpływ na melatoninę i serotoninę. Glutamina może być obniżona, co powoduje „szalone myśli”. Histydyna może być obniżona, co prowadzi do obniżenia histaminy, co u niektórych osób prowadzi do psychotycznych myśli i oznacza dodatkowo, że reakcje systemu odpornościowego na stan zapalny będą zaburzone, co doprowadzi do przewlekłej aktywacji niektórych składników systemu odpornościowego. Wysoka histamina może prowadzić do zwiększonego stanu zapalnego, anafilaksji oraz do myśli psychotycznych. Niski poziom GABA może prowadzić do podenerwowania i problemów ze snem. GABA zwiększa dopaminę. W tym kontekście „wysokie” i „niskie” należy interpretować w relacji do zakresów pozostałych aminokwasów, a nie wyłącznie w kontekście norm dla danego aminokwasu. Należy pamiętać, że w sensie biochemicznym każdy z nas się różni, a organizmy niektórych osób mogą być w równowadze przy wyjątkowo wysokim/niskim poziomie danego aminokwasu – ale u większości ludzi tak nie jest i jeżeli kilka wskaźników jest zaburzonych, na pewno coś jest nie tak.

Zaburzona jest gospodarka minerałami. Pojawia się hipomagnezemia, hipo- lub hiperkalemia i czasem hiponatremia.

Mobilizacja i odkładanie się tłuszczy – rtęć może bezpośrednio wpływać na oba te procesy, hamując tworzenie się cAMP oraz pośrednio przez stymulację receptorów insuliny. Niektóre osoby zatrute rtęcią łatwo przybierają na wadze na rozsądnych dietach. Mogą występować u nich przy tym normalne poziomy hormonów nadnerczy.

Zahamowanie aktywności enzymów – wiele z nich działa gorzej z uwagi na zatrucie. Jest to jądro wszystkich procesów patologicznych. Zaburza fundamentalne chemiczne szlaki, do których wymagane są różne enzymy. Dlatego efekt działania rtęci na daną osobę różni się, bo zależy od wrażliwości specyficznych alleli każdych z tych enzymów, które zależą od konstrukcji genetycznej danej osoby.

Często zaburzona jest oksydaza siarczynów i inne podobne enzymy. Może to prowadzić do nadwrażliwości na siarczyny, reakcje na jedzenie zawierające siarkę, jak również sprawić, że dla metabolizmu fazy 2 nie będzie dostępna wystarczająca ilość siarczanów.

System cytochromu P450 – serce metabolicznych procesów fazy 1, fosforylacji oraz biosyntezy steroidów. Rtęć hamuje działanie różnych enzymów tego systemu w różnym zakresie.

Dioksygenaza cysternowa jest jednym z enzymów CYP450, które tworzą hipotaurynę (a w konsekwencji taurynę) z cysteiny. Rtęć hamuje działanie tego enzymu, co prowadzi do niskich poziomów tauryny i konieczności jej suplementowania, jak również do wysokich poziomów tauryny, co musi podlegać ścisłej dietetycznej kontroli.

Tauryna podnosi poziom dopaminy, co podnosi poziom insuliny i może spowodować reaktywną hipoglikemię.

Rtęć hamuje działanie kilkunastu enzymów, które metabolizują acetylocholinę.

Metyzacja jest często hamowana przez rtęć. Jest odpowiedzialna za utrzymywanie w równowadze tłuszczy i cholesterolu, jak również za wiele innych reakcji biochemicznych. Metyzację można przyspieszyć kwasem foliowym (5-MTHF), witaminami B6 i B12 oraz metylowanymi suplementami. Metionina to naturalna substancja metylowana, ale u osób z podwyższoną cysteiną metionina musi być ograniczana, gdyż przez homocysteinę jest ona metabolizowana do cysteiny. Cholina, trójmetylglicyna (TMG) itp. to też metylowane substancje i mogą być substytutem metioniny. Podwyższona homocysteina z powodu wchłaniania metioniny z pożywienia bez przyjmowania innych metylowanych suplementów i przy zablokowanym metabolizmie cysteiny – może doprowadzić do szybszego powstania arteriosklerozy.

Szlak neuroprzekaźników katecholaminowych wygląda następująco:  epinefryna. Konwersjaà norepinefryna à dopamina à tyrozyna àfenylalanina  norepinefryny do epinefryny wymaga metyzacji.

à serotonina à 5-hydroksytryptofan (5HTP) àTryptofan  melatonina to szlak metaboliczny tych neuroprzekaźników.

Rtęć selektywnie katalizuje oksydację membran komórkowych. Niszczy to niezbędne kwasy tłuszczowe i substancje tworzące membrany jak fosfatydyloserina i fosfatydylocholina. Ta zmiana w składnikach membran zaburza sygnalizację międzykomórkową, funkcje komórek, sprawia że są ona bardziej podatne na stres oksydacyjny i umożliwia inne patologiczne procesy. Niedobór fosfatydyloseriny w szczególności zaburza pamięć krótkotrwałą i prowadzi do depresji.

 

UKŁAD ODPORNOŚCIOWY

Rtęć przy nagłym zatruciu, a nawet i rok po zatruciu, może w takim stopniu zaburzać działanie układu odpornościowego, że prowadzić to będzie do powtarzających się infekcji dróg oddechowych itp.

Rtęć zmienia stosunek wspomagających limfocytów T do supresyjnych limfocytów T i wzmaga wrażliwość na antygeny, a tym samym rozwój alergii.

Rtęć zaburza odporność komórkową, a zatem wirusy nie są zabijane i infekcje wirusowe są przewlekłe. Ilość komórek NK jest zmniejszona, a to właśnie te komórki walczą z nowotworami, zatem rtęć zwiększa podatność na zachorowanie na nowotwory.

Rtęć zmienia proporcje różnych przeciwciał. Może wystąpić nadprodukcja przeciwciał jakiejś klasy i niedobór innych przeciwciał (zwykle niedobór dotyczy IgG 1 i 3 oraz sIgA) co prowadzi do podatności na różne infekcje.

na podstawie: Czy plomby amalgamatowe są bezpieczne dla ludzi? Opinia komitetu naukowego Komisji Europejskiej, Joachim Mutter:

Toksyczność rtęci

Rtęć jest 10 razy bardziej toksyczna od ołowiu, co wykazały badania in vitro [88-90]. Rtęć jest najbardziej toksycznym nie-radioaktywnym pierwiastkiem. Opary rtęci to jedna z najbardziej toksycznych form rtęci na równi z rtęcią organiczną. O tej nadzwyczajnej toksyczności rtęci świadczą następujące okoliczności:

a) Rtęć jest jedynym metalem, który w temperaturze pokojowej jest gazem bardzo łatwo absorbowanym przez układ oddechowy (80%).

b) Opary rtęci z amalgamatów wnikają do tkanek bardzo łatwo z uwagi na monopolarową konfigurację atomową.

c) Wewnątrz komórek opary są oksydowane do Hg2+, bardzo toksycznej formy rtęci, która wiąże się ściśle z grupami tiolowymi różnych protein, uniemożliwiając ich aktywność biologiczną.

d) Hg2+ jest bardziej toksyczna niż Pb2+, kadm (Cd2+) I inne metale, bo ma większą retencyjność w ciele z uwagi na silną więź z grupami tiulowymi (cysternami w białkach), co powoduje nieodwracalne zahamowanie ich aktywności. Inne metale tworzą odwracalne więzi z proteinami i są dlatego mniej toksyczne.

e) Hg2+ nie wiąże się wystarczająco ściśle z grupami węglowymi naturalnych kwasów organicznych aby zapobiec jej toksyczności.

f) Chelatory takie jak EDTA, które normalnie powstrzymują efekty działania metali ciężkich jak ołów, nie mają takiego oddziaływania na toksyczność rtęci, a mogą nawet I ją zwiększać [91,92]. Inne chelatory (DMPS i DMSA) hamują toksyczne efekty Cd2+ i Pb2+, ale nie Hg2+ [93]. DMPS, DMSA albo naturalne środki jak witamina C, glutation czy kwas alfa-liponowy nie usuwają rtęci z układu nerwowego [94]. (tu niestety autor nie uwzględnił specyficznej farmakokinetyki ALA, dokładne wyliczenia na ten temat dostępne w „Amalgam Illness” A. Cutler). DMPS albo DMSA mogą nawet zwiększać hamujące działanie Hg2+ i Cd2+ na enzymy, co nie dotyczy Pb2+ [95]. Co więcej, DMPS u zwierząt doprowadziło do zwiększenia stężenia rtęci w rdzeniu kręgowym [96].

Toksyczność rtęci metylowanej, która znajduje się w rybach wygląda na niższą (tylko około 1/20) niż rtęci metylowanej wykorzystywanej w eksperymentach [97].

Ponadto, ryby morskie są bogatym źródłem selenu i kwasów tłuszczowych omega-3, które chronią przed toksycznością rtęci. Niezależnie od tego chlorek rtęci metylowanej, który jest bardziej toksyczny niż rtęć metylowana z ryb, był mniej neurotoksyczny dla rozwijających się układów nerwowych in vivo niż opary rtęci [98].

Badania Drascha et al. pokazują podobne korelacje: Społeczność poszukiwaczy złota, poddana ekspozycji na opary rtęci, wykazywała znacząco więcej objawów zatrucia rtęcią niż grupa kontrolna, która była poddana ekspozycji na rtęć metylowaną z ryb, pomimo że poziomy rtęci we włosach i osoczu były wyższe w porównaniu do osób poddanych ekspozycji na opary rtęci [65,66]. Inne badania wskazują też na mniejszą neurotoksyczność rtęci metylowanej z ryb, w porównaniu do jatrogennych źródeł rtęci (amalgamat, tiomersal) [46]. Tutaj, w przeciwieństwie do ilości plomb amalgamatowych u matek, nie ma korelacji pomiędzy jedzeniem ryb przez matki w ciąży i ryzykiem autyzmu u dzieci.

Podsumowując, opary rtęci z amalgamatów albo rtęć metylowana pochodząca z amalgamatów mają pełen potencjał toksyczny. Z drugiej strony rtęć metylowana w rybach już weszła w więź z proteinami w rybach albo innymi ochronnymi cząsteczkami w rybach takich jak glutation i selen, w które ryby są bogate. Co więcej, nowsze badania potwierdzają, że większość osób z plombami amalgamatowymi jest narażonych na toksyczne poziomy rtęci [99,100].

Synergistyczna toksyczność rtęci i ołowiu (Pb)

 

Niektórzy naukowcy próbują polemizować, twierdząc że wyniki otrzymane drogą analizy zwierząt lub komórek są przeszacowane i nieporównywalne do stanu ludzkiego organizmu. Jednakże w przeciwieństwie do zwierząt wykorzystywanych w eksperymentach, ludzie poddani są stałej ekspozycji na różne inne toksyny, a zatem ich efekty sumują się, a nawet są synergistyczne [101,102]. Na przykład udowodniono, że kombinacja śmiertelnej dawki 1% rtęci (LD1Hg) wraz z dawką śmiertelną LD1 ołowiu (Pb) skutkuje śmiercią wszystkich zwierząt, więc można sformułować następujące równanie toksykologiczne: LD1 (Hg) + LD1 (Pb) = LD 100 [101].

W tym kontekście trzeba sobie uzmysłowić, że nowoczesny człowiek ma więcej rtęci i około 1000 razy więcej ołowiu w tkankach ciała niż człowiek starożytny.

W innych eksperymentach dodanie tlenku glinu (zwykle jest on w szczepionkach), antybiotyków, tiomersalu (bywa w szczepionkach) i testosteronu zwiększyło toksyczność rtęci [108,109]. Synergistyczna toksyczność testosteronu wyjaśnia, dlaczego o wiele więcej mężczyzn niż kobiet cierpi na autyzm  czy stwardnienie boczne zanikowe.

 Genotoksyczność, stress oksydacyjny, nowotwór

Plomby amalgamatowe powodują uszkodzenie DNA w komórkach krwi u człowieka. [115] Nawet niskie poziomy rtęci nieorganicznej prowadzą do znaczącego uszkodzenia DNA w komórkach ludzkich tkanek i limfocytach [116]. Ten efekt, który wywołuje raka, został stwierdzony u osób z poziomem rtęci poniżej tego, który normalnie wywołuje cytotoksyczność i śmierć komórkową . Ponadto aberracje chromosomów mogą być spowodowane prze działanie amalgamatu na kultury komórkowe [117]. Osoby mające amalgamaty mają wyższe markery stresu oksydacyjnego w ślinie [118,119] i krwi [120,121]. Wzrost stresu oksydacyjnego koreluje z ilością plomb. Poziomy rtęci obserwowane normalnie w tkankach osób z amalgamatami prowadzą do zwiększonego stresu oksydacyjnego i redukcji poziomów glutationu, co powoduje uszkodzenia komórek [33,34]. Znacząco podniesione poziomy rtęci zaobserwowano też w tkankach nowotworu piersi [122]. Rtęć odłożona w tkankach wiąże się zwykle z selenem, co oznacza, że selen nie jest już dostępny dla organizmu. Amalgamaty mogą dlatego wzmagać deficyt selenu, zwykle w krajach, gdzie poziom selenu jest niedostateczny (np. Europie Środkowej) [123,124].

 Odporność na antybiotyki

Udowodniono, że rtęć z plomb amalgamatowych może wywoływać odporność na rtęć u bakterii [125-127]. To prowadzi do ogólnej odporności na antybiotyki bakterii w jamie ustnej i w innych miejscach [127], co jest szczególnie prawdziwe w sytuacji, kiedy geny odpowiedzialne za odporność na antybiotyki są zawarte w tym samym operonie odporności na rtęć [128,129]. Odporność na rtęć jest powszechna u bakterii jamy ustnej człowieka [130,131]. Małpy z amalgamatami miały więcej bakterii odpornych na antybiotyki stwierdzonych w kale [127,132].

 Penetracja szczęki i kości jarzmowej przez amalgamaty

Eksperymenty na małpach i owcach wykazały, że rtęć z amalgamatów łatwo penetruje korzenie zębów i kości szczęki [25,26]. Fakt, że stwierdzono to też u ludzi [133] potwierdza alternatywną drogę ekspozycji na rtęć spowodowaną przez amalgamaty.

 Skóra

Jest korelacja między atopowym zapaleniem skóry, poziomami IgE i obciążeniem rtęcią [134]. Plomby amalgamatowe mogą powodować liszaje [135-139]. W ponad 90% przypadków te zmiany ustąpiły po usunięciu rtęci, niezależnie od tego, czy wyniki alergologiczne były nadal pozytywne. Poprawiła się również granulomatoza [140]. Inne formy zapalenia skóry wydają się być powiązane z amalgamatami [141,142].

 Zaburzenia autoimmunologiczne i nadwrażliwość na rtęć

Stała ekspozycja na rtęć w małych dawkach, powszechna u osób z amalgamatami, jest możliwym źródłem niektórych chorób autoimmunologicznych, np. stwardnienia rozsianego, artretyzmu czy tocznia rumieniowatego układowego [135,143-152]. Te efekty pojawiają się przy ekspozycji poniżej bezpiecznych limitów dla rtęci [153]. Ostatnie badania wykazały, że rtęć i rtęć etylowana na bardzo niskich poziomach mają zdolność hamowania pierwszego kroku (fagocytozy) wrodzonej  odpowiedzi immunologicznej u ludzi [154]. To pokazuje, że ekspozycja na rtęć poniżej średniej ekspozycji może powodować zaburzenia układu odpornościowego u osób w różnym wieku.

 Tylko “rzadkie przypadki dowiedzionych reakcji alergicznych”?

Udowodniono, że u ponad 90% przypadków, u których stwierdzono reakcje błony śluzowej, te zmiany wyleczyły się po usunięciu amalgamatów, niezależnie od wyników testu skórnego [137,139,140]. Dlatego waga testów skórnych w wykrywaniu nadwrażliwości czy alergii na rtęć w jamie ustnej bez kontaktu rtęci ze skórą, jest kwestionowana [155].

Wyniki innych wiarygodnych badań potwierdzają, że immunologiczne problemy spowodowane amalgamatami są częstsze niż “rzadkie przypadki” [148,150,152,156-162].

Może być też korelacja między atopowym zapaleniem skóry, poziomami IgE i obciążeniem organizmu rtęcią, której nie wykażą testy skórne [134].

Z uwagi na fakt, że rtęć z amalgamatów matki jest jednym z głównych źródeł rtęci u płodu I noworodka, poporodowe atopowe zapalenie skóry znika po odtruciu dzieci z rtęci [163].

 Choroby serca

Rtęć może powodować nadciśnienie i zawał mięśnia sercowego[164].

Znaczące kumulacje rtęci (22,000 razy wyższe niż w grupie kontrolnej) ujawniono w tkance serca dotkniętego niewydolnością [165].

 Układ moczowy

W eksperymentach na zwierzętach stwierdzono upośledzenie funkcji kanalików moczowych z powodu plomb amalgamatowych [23,146,167]. Ludzie z amalgamatami wykazują więcej objawów uszkodzenia układu moczowego niż osoby bez tych plomb [15]. Często wymieniane badanie dzieci ujawniło pierwsze oznaki uszkodenia nerek (mikroalbuminuria) [168] nawet po 5 latach od ekspozycji na amalgamaty.

 Choroba Alzheimera (AD)

Badania wykazały, że rtęć odgrywa ogromną rolę w patogenezie choroby Alzheimera [108,109,169,170]. Nowa systemowa analiza literatury pod tym kątem wykazała znaczący związek [124].

 Choroba Parkinsona (PD)

Metale ciężkie podejrzewane są od dawna jako podłoże PD, wiele badań pokazuje ten związek, w tym badania epidemiologiczne [171-180]. Rtęć pierwiastkowa powoduje PD [175] i w badaniach przypadku wykazano, że stan chorego wyraźnie poprawił się po terapii chelatacyjnej [173] i pozostał niepogorszony podczas kolejnego okresu 5-letniego [173]. W  innych badaniach stwierdzono znacząco podwyższone poziomy rtęci we krwi u 13 z 14 pacjentów z PD w porówaniu do grup kontrolnych [172]. To jest zgodne z wnioskiem poprzednich badań, które ujawniły związek między poziomami rtęci we krwi i PD [176]. Inne badania ujawniły znacząco wyższą ekspozycję na amalgamaty u osób z PD w porównaniu do  grup kontrolnych [179].

 Efekty uboczne u personelu dentystycznego?

Dentyści pracujący z amalgamatami mają zwiększoną ekspozycję na rtęć [17,181,182]. W większości dostępnych badań ta ekspozycja w klinikach dentystycznych powodowała znaczące efekty zdrowotne u dentystów. W niektórych badaniach, obraz kliniczny nie był skorelowany z poziomem rtęci w moczu czy krwi, więc niektórzy badacze fałszywie przyjęli, że rtęć nie była powodem tych reakcji. Jednakże, nie jest to wniosek zgodny z prawidłami nauki, gdyż poziomy rtęci w moczu oraz krwi nie odpowiadają poziomom w tkankach (patrz powyżej). Lindbohm et al. (2007) ujawnili dwukrotnie wyższe ryzyko poronień poprzez zawodową ekspozycję na rtęć (OR 2,0; 95% CI 1,0- 4,1). Ten efekt ekspozycji na rtęć był silniejszy niż efekt ekspozycji na substancje akrylowe, dezynfekujące czy rozpuszczalniki [199].

Nawet w 30 lat po ekspozycji na rtęć, pielęgniarki stomatologiczne miały znaczące problemy zdrowotne [200]. Pomimo faktu, że 85% dentystów i techników stomatologicznych wykazało zmiany odpowiadające toksyczności rtęci zarówno w parameytrach biologicznych, jak i behawioralnych, a 15% wykazało zwiększony poziom deficytów neurologicznych z polimorfizmem genu CPOX4 [186,188,201], SCENIHR wciąż utrzymuje, że amalgamaty nie powodują znaczących problemów zdrowotnych u dentystów, bo poziomy rtęci we krwi oraz moczu są poniżej „bezpiecznych limitów “.

 Bezpłodność

Asystentki dentystów poddane ekspozycji na amalgamat wykazały wyższy wskaźnik bezpłodności [198]. Kobiety z dużą ilością plomb albo zwiększonym poziomem rtęci w moczu (po podaniu DMPS) miały wyższy wskaźnik bezpłodności [202-204]. Detoksykacja metali ciężkich doprowadziła do spontanicznego zachodzenia w ciążę u znacznej ilości bezpłodnych pacjentów [203]. Ekspozycja na rtęć doprowadziła do zmniejszonej płodności mężczyzn [205-207]. Studium norweskie, często cytowane jako dowód, że ekspozycja na rtęć w klinikach dentystycznych nie powoduje bezpłodności, obarczone jest metodologicznymi błędami, gdyż uwzględniono w nim tylko kobiety, które urodziły już przynajmniej jedno dziecko. Kobiety bezdzietne zostały wykluczone. Takie studium oczywiście nie może odpowiedzieć na pytanie, czy praca z amalgamatami prowadzi do bezpłodności, czy nie. Co więcej nie wyliczono czasu ekspozycji na amalgamat i nie uwzględniony on został jako zmienna w studium.

 Stwardnienie rozsiane (MS)

W płynie mózgowo-rdzeniowym pacjentów z MS ujawniono 7,5 razy zwiększony poziom rtęci [208]. Ciężko nie spekulować, czy obecność rtęci w takiej ilości przynajmniej nie wpływa na zaostrzenie problemów powiązanych z MS albo inną chorobą neurologiczną. Częstotliwość MS jest skorelowana z częstotliwością próchnicy [209,210] i amalgamatów [211,212]. Kilkanaście przypadków MS spowodowane zostało ostrym zatruciem oparami rtęci czy ołowiu [213]. U zwierząt rtęć nieorganiczna spowodowała utratę komórek Schwanna, które budują osłonki mielinowe i stabilizują aksony [214]. Patogeneza autoimmunologiczna, w tym przeciwciała przeciwko podstawowemu białku mielinowemu (MBP), może być sprowokowana przez rtęć i inne metale ciężkie [148].

Pacjenci MS, u których usunięto plomby amalgamatowe, rzadziej cierpieli na depresję, agresję, było mniej zachowań psychotycznych i kompulsywnych w porównawniu do pacjentów z amalgamatami [215]. Mieli też niższe poziomy rtęci we krwi [216]. Po usunięciu amalgamatu, patologiczne prążki oligoklonalne w płynie mózgowo-rdzeniowym zniknęły u pacjentów z MS [217]. Usunięcie amalgamatów doprowadziło do wyleczenia dużej ilości pacjentów z MS [147]. Retrospektywne studium 20.000 żołnierzy wykazało znacznie większe ryzyko MS u osób z amalgamatami [218]. To ryzyko było niedoszacowane, bo grupa badawcza wybrana drogą badań medycznych składała się z osób o dobrym zdrowiu w trakcie zaciągu do wojska [218]. Inny problem pojawiający się w niektórych badaniach to brak dokumentacji dentystycznej sprzed czasu rozwoju MS. Pomimo tych ograniczeń [219] powtórna analiza ujawniła 3,9 razy większe ryzyko MS u osób z amalgamatami w porównaniu do osób  bez amalgamatów. Niedawny przegląd badań dowiódł także, że istnieje zwiększone ryzyko MS spowodowanego przez amalgamaty gdyż większość badań nie była oparta na właściwej grupie kontrolnej bez amalgamatów [220].

 Stwardnienie zanikowe boczne (ALS)

Opary rtęci są absorbowane przez neurony motoryczne [221] co prowadzi do zwiększonego stresu oksydacyjnego. W eksperymentach wykazano, że opary rtęci powodują choroby neuronów motorycznych, takie jak [222-226]. Udowodniono, że rtęć zwiększa toksyczność glutaminianu, która jest czynnikiem przy ALS. Badania przypadków wykazały korelację pomiędzy przypadkową ekspozycją na rtęć a ALS [227,228]. Doniesiono o przypadku Szwedki, która miała ponad 34 amalgamaty i cierpiała na ALS. Po usunięciu tych plomb, wyzdrowiała [229]. Retrospektywne stadium ujawniło statystycznie znaczący związek między większą ilością amalgamatów i ryzykiem chorób neuronów motorycznych [218].

 ”Choroba amalgamatowa” i wskaźniki wrażliwości

Pomiędzy najczęściej zgłaszanymi objawami choroby amalgamatowej są: chroniczne zmęczenie, bole głowy, migreny, zwiększona podatność na infekcje, ból mięśni, brak koncentracji, zaburzenia trawienia, zaburzenia snu, słaba pamięć, bóle stawów, depresje, zaburzenia pracy serca, rozregulowanie układu wegetatywnego, zaburzenia nastroju i inne [161,215,216,230-234].

Do niedawna nie było możliwe rozróżnienie pomiędzy osobami „wrażliwymi na amalgamaty” i „odpornymi na amalgamaty” poprzez zmierzenie poziomów rtęci w ich krwi czy moczu albo testy skórne [9,21]. Jednakże udowodniono, że niektóre osoby mogą reagować na test skórny zaburzeniami psychopatycznymi, chociaż nie było alergicznej reakcji na skórze [235]. Dodatkowo granulocyty neutrofilowe u osób podatnych na amalgamaty reagowały inaczej niż u osób odpornych [236], jak również ujawniono różną aktywność dysmutazy nadtlenkowej [237].

Jak zatrucie rtęcią wpływa na organizm?

Jak zatrucie rtęcią wpływa na organizm?

na podstawie: Andrew Hall Cutler, „Amalgam Illness”

 

Opis przewlekłego zatrucia rtęcią.

 

Wszystkie z niżej wymienionych objawów pojawiają się i znikają. Żaden z nich nie jest stały. Im bardziej ktoś jest zatruty, tym częstsze są u tej osoby objawy, na które czyni ją podatna jej własna fizjologia. Z powodu odmienności osobniczych u różnych osób objawy będą różne, a u każdej z tych osób dany objaw może ale nie musi wystąpić.

W sensie ogólnej oceny jakości życia, fakt że objawy pojawiają się i znikają prowadzi do tego, że ofiara ma tygodnie a nawet lata normalnego funkcjonowania, gdy jest wydajna i efektywna na zmianę z okresami bezproduktywności i trudności w wykonaniu najprostszych zadań. Osoba intensywnie realizuje jakiś projekt po to, aby potem odłożyć go na długi okres czasu. W miarę postępu choroby okresy produktywne są coraz krótsze, rzadsze i oddalone w czasie.

Objawy przewlekłego zatrucia rtęcią powstają w pierwszej kolejności w ośrodkowym układzie nerwowym. Następnie, w miarę jak pogarsza się metabolizm wątroby, pojawiają się dysfunkcje układu odpornościowego i problemy z przewodem pokarmowym. Mogą się pojawić problemy hormonalne. Rzadko występuje dysfunkcja nerek, która jest częsta przy ostrym zatruciu.

Nie ma typowego zestawu objawów – spektrum waha się od lekkich zaburzeń do całkowitego uniemożliwienia funkcjonowania. Zatrucie postępuje powoli i zmienia obraz narastających dysfunkcji.

Występują zmiany emocjonalne. Powoli pojawia się depresja. Ofiary czują się przemęczone, obojętne. Brakuje im motywacji nawet do najprostszych zadań. Tracą zainteresowanie otoczeniem i własnym życiem. Nie cieszą się życiem, nie doświadczają szczęścia czy radości. Doświadczają ciągłego strachu np. przed utratą pracy. Mogą być bardzo spięci. Brakuje im nadziei. Mają poczucie, że ciąży nad nimi klątwa. Nawet mała porażka ich zniechęca. Niewielkie trudności wydają się nie do pokonania.

Zmieniony stan emocjonalny u osoby zatrutej rtęcią prowadzi do upośledzonych stosunków międzyludzkich. Stają się bardzo drażliwi i wrażliwi, reagują silnie na względnie łagodne uwagi. Mogą nie być w stanie słuchać się poleceń, instrukcji czy sugestii i reagować na nie wybuchem złości. Mogą niewinne uwagi interpretować jako bardzo krytyczne. Mogą mieć przesadzoną reakcję na jakiekolwiek stymulacje i charakteryzuje ich nerwowość, zaniepokojenie. Mogą projektować swoje lęki i obawy na innych , wypowiadając niestosowne krytyczne uwagi i atakując inne osoby. Stają się nieśmiali, unikają kontaktu z obcymi. Pomimo tego mogą w nieoczekiwany sposób stracić nad sobą kontrolę w obecności obcych. Mogą chcieć częstych kontaktów z rodziną i przyjaciółmi, zwykle angażując ich w długie dyskusje na te same tematy – a potem unikać kontaktu przez długi czas. Coraz bardziej wycofują się z kontaktów społecznych.

Te zmiany emocjonalne redukują możliwość bieżącego funkcjonowania. Ofiary są często niespokojne. Brakuje im samokontroli i właściwej oceny rzeczywistości. Łatwo wpadają w zakłopotanie. Mogą stać się kłótliwi i zaniedbywać pracę i rodzinę. Nie mają cierpliwości. Tracą poczucie własnej wartości i stają się niedecyzyjni. Pojawiają się stany euforyczna albo maniakalno-depresyjne. Częste są też zachowania albo myśli obsesyjno-kompulsywne. W cięższych przypadkach możliwe są urojenia a nawet halucynacje.

Poziom inteligencji stopniowo maleje. Osoby, które wcześniej były bystre, stają się powolne w myśleniu. To stopniowe pogorszenie dotyczy konkretnie pamięci krótkotrwałej i logicznego rozumowania. Nie potrafią planować wydatków, grać w szachy, tracą zdolność koncentracji. Problemy z pamięcią mogą brać się raczej z łatwego rozproszenia uwagi i niezdolności do koncentracji tak aby zapamiętać rzeczy niż z prawdziwych zaburzeń pamięci (czyli osoby mogą skarżyć się na problemy z pamięcią ale radzą sobie dobrze na testach pamięci). Nie są zmotywowane do wykonywania pracy. Myśli są ciężkie, powtarzające się i pedantyczne. Coraz trudniej jest myśleć kreatywnie, ostatecznie staje się to niemożliwe. Pojawiają się problemy w odszukaniu właściwych słów, błędy stylistyczne i gramatyczne. Niezdolność do wyrażenia swoich myśli jest postępująca.

Specyficznym objawem jest niezdolność jasnego myślenia bez włożenia w to wielkiego wysiłku. Najlepszym opisem dla osób, które tego nie doświadczyły, to jak być na ciągłym kacu ale bez bólu. Osoby, które tego doświadczyły, wiedzą że termin „mgła umysłowa” najlepiej oddaje ten stan.

Zmiany poziomu zatrucia prowadzą do tego, że pojawiają się okresy w życiu, gdy zatrute osoby nie mają snów. Sny mogą być też czarno-białe.

Subiektywne doświadczenie zatrucia rtęcią to uczucie drażliwości, podekscytowania, lęki, niepokoju, melancholii, depresji, słabości, zmęczenia, przytłumienia, braku decyzyjności i bólu głowy. Poczucie beznadziei, depresji i bezsensowności są częścią zespołu zatrucia. Ofiara ma poczucie, że jej sposób postępowania jest racjonalny i uzasadniony. Umysłowe skutki zatrucia powodują stres i przerażenie.

Wczesne objawy fizyczne obejmują mdłości, dzwonienie w uszach, bezsenność, uczucie zmęczenia w ciągu dnia, utratę apetytu, tendencję do biegunek na zmianę z zatwardzeniami, zimne stopy i dłonie, tendencję do pocenia się (niektóre osoby mają odwrotnie i nie pocą się wcale), wysypki i zaczerwienienia skóry, głównie na twarzy i szyi.. Niektóre osoby często się czerwienią, inne wcale. Astma to jeden z objawów przewlekłego zatrucia rtęcią. Bardzo powszechne są też problemy z trawieniem.

Skóra staje się sucha, może się pojawić grzybica stóp a okolice kostek stają się swędzące, wysuszone. Często jest to na tyle denerwujące i bolesne, że powoduje bezsenność. Nawet po eliminacji infekcji grzybiczej występuje nadmierne podrażnienie skóry, swędzenie.

Włosy stają się cieńsze, suchsze, bez połysku i koloru, wolniej rosną i są łamliwe.

Zaburzony jest zegar biologiczny. Bardziej powszechne jest późne zasypianie i późne wstawanie. Mimo wysiłków osoby zatrute nie potrafią wyregulować sobie cyklu dnia i nocy.

Ofiary mogą cierpieć na lęk przed światłem, a bardzo jasne światło może być nieprzyjemne. Mogą być problemy z widzeniem, w tym zaburzenia percepcji kolorów ze zmniejszoną wrażliwością na kolor czerwony albo daltonizmem włącznie. Sporadycznie zaburzona jest zdolność skupiania wzroku na oddalonych obiektach. W niektórych przypadkach zaburzone może być widzenie trójwymiarowe.

Dłonie i stopy często stają się bardzo zimne. Pojawia się to nagle, zwykle z poceniem się. W miarę postępu zatrucia może wystąpić brak czucia i mrowienie dłoni i stóp.

U niektórych osób występuje krwawienie dziąseł, łatwo wypadają im zęby, może pojawić się nadmierne ślinienie się i wyjątkowo nieświeży oddech.

Rtęć zaburza zmysł zapachu, który staje się mniej dokładny, a potem – zmysł słuchu. Percepcja słuchowa nie pogarsza się aż tak jak zdolność pacjenta do zrozumienia i interpretacji dźwięków – np. słyszą wypowiadane do nich słowa ale ich nie rozumieją.

Ofiary doświadczają także dyskomfortu, który opisują jako „ciasna opaska wokół ich głów”. W czasie zasypiania pojawia się ból w kanałach usznych.

Rtęć zaburza też zdolność do regulowania temperatury ciała. Ofiary mogą czuć zimno i ciepło mimo, że temperatura się nie zmieni. Muszą nosić więcej ubrań niż inni albo trudniej im znosić wahania temperatury. Prowadzi to często do nocnego pocenia się.

U niektórych osób występuje znaczne pocenie się, niektórzy – zwykle kobiety – nie pocą się wcale np. mimo wysiłku czy gorąca.

Przyspieszenie tętna (tachykardia) jest bardzo częste. Tętno może zmieniać się w ciągu kilku minut bez powodu. Mogą pojawić się bóle serca. Lekarze podczas badań stwierdzają okresowe szmery w sercu i spłaszczoną falę T albo wydłużony interwał QT podczas EEG.

Kobiety mogą mieć bóle brzucha, w okolicach jelit i poczucie suchości pochwy.

Pojawić się może nienaturalne puchnięcie twarzy i nóg.

Rtęć zaburza system hormonalny. Tarczyca może mieć obniżone funkcjonowanie, co łatwo zmierzyć poprzez zmierzenie sobie temperatury rano przed wstaniem (podczas menstruacji – w 2,3 i 4 dniu okresu). Trzymaj długo termometr (przynajmniej 5 minut) pod pachą albo językiem. Jeżeli średnia temperatura jest niższa niż 36,4 stopnie Celsjusza mogą być problemy z tarczycą, niezależnie od wyników z krwi. U kobiet krew menstruacyjna powinna być jasnoczerwona, co sygnalizuje normalną pracę tarczycy. Brązowa krew oznacza niskie poziomy hormonów tarczycowych.

Kolejnym problemem jest nadmierne oddawanie moczu. Więcej niż 2,5 litra dziennie – czyli oddawanie moczu więcej niż 5 czy 6 razy dzienne – nie jest normalne. Budzenie się każdej nocy po to, aby oddać mocz, również nie jest normalne.

Obniżenie funkcji nadnerczy objawia się poczuciem słabości, zmęczenia, depresji, utratą wagi, hipoglikemią, niepokojem i niskim ciśnieniem krwi.

Jeżeli funkcja nadnerczy jest prawidłowa, symptomem zatrucia może być wysokie ciśnienie i ofiara może czuć ciągły głód.

Rtęć zaburza też zdolność ciała do regulacji glukozy. Poczucie zmęczenia 2-3 godziny po posiłku i chęć zjedzenia słodyczy, co na chwilę daje ukojenie, to objawy hipoglikemii (niezależnie czy jej podłożem są problemy z nadnerczami).

Rtęć powoduje rozregulowanie układu odpornościowego. Ofiary często nie potrafią zwalczyć drobnych infekcji, często chorują a przebieg chorób u nich jest poważniejszy niż u innych osób. Może również wystąpić alergia, astma i inne problemy z oddychaniem.

Alergie zwykle objawiają się astmą, swędzącą skórą, zmęczeniem ale nie ma cieknącego nosa. Nos jest zapchany. Swędzenie występuje na odkrytych partiach skóry, ulgę przynosi jej przemycie.

Ofiary zatrucia rtęcią mają problemy z metabolizmem alkoholu i często nie piją go bo nie sprawia im to przyjemności albo czują się potwornie po jednym czy dwóch drinkach. Gdy metabolizm staje się bardziej zaburzony, pojawia się nadwrażliwość chemiczna.

Rtęć (i inne metale ciężkie) zaburza także aktywność pewnych enzymów, które przestają pełnić funkcję detoksykującą a ofiara staje się bardziej wrażliwa na jakość powietrza, pokarmu i na chemikalia. Może dojść do wybiórczego jedzenia, poczucia zmęczenia czy depresji przy zanieczyszczeniu powietrza, wysypek skórnych poprzez podrażnienie proszkiem do prania albo kosmetykami.

Rtęć zaburza utlenienie krwi. Pojawiają się nagłe duszności, poczucie wyczerpania pomimo braku ćwiczeń fizycznych. Wraz z tym występuje uczucie chłodu, niezdolność do wygenerowania naturalnej ciepłoty ciała. Pomoże w tym suplementacja hormonami tarczycy, nawet gdy testy z krwi są w normie.

Rtęć zaburza mechanizmy krzepnięcia krwi i powoduje łatwe zasinienie skóry i trudności w powstrzymaniu krwawienia.

Osoby zatrute rtęcią mogą mieć dziwny zapach ciała, często określany jako podobny do zapachu słodkiego mleka.

Podczas wypróżniania mogą mieć poczuci, że nie oczyścili całych jelit, pomimo że to zrobili.

Poczucie słabości pojawia się głównie w okolicy ramion pomiędzy bicepsem a tricepsem – chociaż nie ma tam mięśnia, który mógłby być słaby. Jest ono konkretnie ulokowane w tym obszarze,

Pojawić się też mogą drżenia mięśni – drżenie powiek, słaba koordynacja warg i języka prowadząca do niewyraźnej mowy. Drżenia palców, powiek i ust zdarzają się w pierwszej kolejności. Drżenia dłoni powodują niemożność wykonania zadań wymagającej dobrej koordynacji – charakter pisma staje się niewyraźny, trudno jest narysować proste linie czy wykonać inne precyzyjne prace. Na koniec pojawiają się drżenia nóg, które zanikają w trakcie snu a są intensywne przy stresie. Są mniej regularne niż takie, które obserwuje się przy nadczynności tarczycy. Są to delikatne drżenia przerywane co parę minut gwałtowniejszymi ruchami. Zaczynają się od palców. Ostatecznie powodują problemy z poruszaniem się. Mogą też wystąpić napady padaczkowe.

Pogarsza się zdolność skupienia wzroku i kontrolowania źrenic, jak również zdolność do konwergencji – zbieżności dwojga oczu na jednym przedmiocie, aby widzenie było głębokie a nie podwójne. Ostatecznie mięśnie, które poruszają oczami, słabną i ofiara musi obracać głowę na boki, zamiast ruszać oczami.

Widoma oznaka utraty koordynacji to trudność w wybieraniu numerów w telefonie albo powtarzające się błędy przy wpisywaniu cyfr na klawiaturze albo częstsze literówki przy pisaniu na klawiaturze.

U dzieci w bardzo rzadkich przypadkach obserwuje się akrodynię – jest to rzadki zespół, którego objawami są silne skurcze nóg, drażliwość, uczucie mrowienia na skórze i bolesność palców, które mają silny różowy kolor oraz łuszcząca się skóra na dłoniach, stopach i nosie. Podobne objawy są u dorosłych ,szczególnie chemicznie wrażliwych.

W zakresie zachowań seksualnych zatrucie rtęcią u mężczyzn powoduje wycofanie się, depresyjność a u kobiet – zaniepokojenie, nieśmiałość, lęki i napięcie.

W pewnych okolicznościach zatrucie rtęcią może zostać rozpoznane we wczesnej fazie, Na przykład po zastąpieniu plomb amalgamatowych plombami zwykłymi albo przy innych ekspozycjach na rtęć. W tej wczesnej fazie w moczu mogą być krwinki czerwone, mocz staje się wówczas różowy (nie czerwony). Bardzo silna ekspozycja na rtęć powoduje mdłości, utratę apetytu i biegunkę. Zmiany fizyczne, emocjonalne, umysłowe i hormonalne pogłębiają się.

 


Autyzm: nowa forma zatrucia rtęcią

„Medical Hypotheses”, 2001, 45(4), 462-471

 Autyzm: nowa forma zatrucia rtęcią.

 S. Bernard, A. Enayati, L. Redwood, H. Rober, T. Binstock

ARC Research, Cranford, New Jersey, USA

Streszczenie: Autyzm to syndrom charakteryzujący się upośledzeniem funkcji społecznych i komunikacji, powtarzalnymi zachowaniami, nie mieszczącymi się w normie ruchami ciała i zaburzeniami integracji sensorycznej. Najnowsze dane epidemiologiczne stwierdzają, iż autyzm może dotyczyć 1 na 150 dzieci w Stanach Zjednoczonych. Ekspozycja na rtęć może powodować dysfunkcje układu immunologicznego, sensorycznego, neurologicznego, ruchowego i dysfunkcje w zachowaniu bardzo podobne do tych, które łączy się z autyzmem, istnieją również podobieństwa w anatomii mózgu, biochemii i pracy neurotransmiterów. Tiomersal, środek konserwujący dodawany do wielu szczepionek, jest głównym źródłem rtęci u dzieci, które w ciągu pierwszych 2 lat swojego życia, otrzymały dawkę rtęci przekraczającą dawkę bezpieczną. Z przeglądu literatury medycznej i danych gromadzonych przez agencje rządowe wynika, że 1. wiele przypadków autyzmu spowodowanych jest wczesną ekspozycją na rtęć z tiomersalu, 2. ten typ autyzmu to niezdiagnozowany syndrom zatrucia rtęcią oraz 3. czynniki genetyczne i nie-genetyczne stanowią o predyspozycji, gdyż taka reakcja na tiomersal ma miejsce tylko u niektórych dzieci.

Wprowadzenie

Zaburzenia ze spektrum autyzmu (ASD) to zaburzenie rozwojowe, które objawia się w ciągu pierwszych 36 miesięcy życia dziecka. Kryteria diagnostyczne dotyczą upośledzenia funkcjo społecznych i komunikacji oraz zachowań powtarzalnych i stereotypowych (1). Cechy powiązane też często z autyzmem to zaburzenia ruchowe i zaburzenia integracji sensorycznej (2). Chociaż autyzm, może być czasem oczywisty u dziecka od momentu urodzenia, większość dzieci autystycznych doświadcza czasami kilku miesięcy, a nawet lat normalnego rozwoju – po czym następuje regres, definiowany jako utratę umiejętności nabytych albo zahamowanie rozwoju (2-4).

Neurotoksyczność rtęci (Hg) jest badana od wielu lat (5). Pierwsze dane pochodziły od ofiar zanieczyszczonych ryb (Japonia – choroba Minamata) albo ziaren zbóż (Irak, Gwatemala, Rosja), z danych na temat akrodynii („różowa choroba”) spowodowanej przez rtęć znajdującą się w proszkach do czyszczenia zębów oraz z pojedynczych przypadków zatrucia rtęcią, wiele z nich powiązanych z pracą zawodową (np. choroba Szalonego Kapelusznika). Badania na zwierzętach oraz in vitro dały wgląd w mechanizmy zatrucia rtęcią. Ostatnio Ford and Drug Administration oraz American Academy od Pediatrics stwierdziły, że średnia ilość Hg, którą przyjmuje niemowlę i małe dziecko wraz ze szczepionkami, przekroczyła zalecenia rządowe co do bezpiecznej dawki rtęci, zarówno jeżeli chodzi o pojedyncze (6), jak i o całościowe (7) ilości znajdujące się w szczepionkach. Rtęć w szczepionkach pochodzi z tiomersalu (TMS), środka konserwującego, który w 49,6% składa się z rtęci etylowanej (eHg) (7).

Analiza przypadków zatrucia rtęcią prowadzi do wniosku, iż istnieje szereg odmienności osobniczych, w zależności od dawki, typu rtęci, sposobu podania, okresu ekspozycji i indywidualnej podatności. Dlatego, podczas gdy istnieją również podobieństwa przypadków zatrucia, u każdego z nich ten zestaw zmiennych doprowadził do innych objawów chorobowych (8-11). Istnieje hipoteza, że regresowa postać autyzmu to po prostu jeszcze jedna forma zatrucia rtęcią, a hipoteza ta oparta jest na wyjątkowej zbieżności pomiędzy objawami autyzmu i zatrucia rtęcią oraz fizjologicznych odstępstw od normy, jak również na potwierdzonej ekspozycji na rtęć ze szczepionek. Co więcej, ujawniono inne zjawiska potwierdzające związek przyczynowy między autyzmem a zatruciem rtęcią. Są to: 1. wystąpienie objawów często niedługo po szczepieniu, 2. ilość przypadków autyzmu zwiększa się wraz ze zwiększeniem ilości szczepień, 3. podobny odsetek płci w obu tych syndromach, 4. wysoki stopień dziedziczenia autyzmu odpowiadający genetycznym predyspozycjom do podatności na działanie rtęci w niskich dawkach i 5. doniesienia rodziców o podwyższonym poziomie rtęci u dzieci z autyzmem.

Porównanie objawów.

ASD objawia się na wiele różnych sposobów z uwzględnieniem odmienności osobniczych (3, 4). Porównanie tych cech zdefiniowanych albo bardzo często ujawnianych w przypadku autyzmu z tymi, które dotyczą zatrucia rtęcią przedstawia tabela 1. Cechy te są również bardziej szczegółowo opisane.

Autyzm jest postrzegany głównie jako zaburzenie psychiczne w przypadkach, gdy wynika z obserwacji, że występują 2 z 3 kryteriów diagnostycznych: 1. upośledzenie funkcji społecznych, zwykle wycofanie z kontaktów społecznych i 2. różnorodne natręctwa lub zachowania stereotypowe i potrzeba niezmienności, która odpowiada tendencjom do zachowań obsesyjno-kompulsywnych. Różne powiązane diagnozy mogą dotyczyć np. dziecięcej schizofrenii, depresji, zaburzeń obsesyjno-kompulsywnych, nerwicy i innych neuroz. Zachowania często stwierdzane u autystów to nieracjonalny strach, słaby kontakt wzrokowy, zachowania agresyjne, napady histerii, podatność na zdenerwowanie i niewyjaśnione zmiany nastroju (1, 2, 12-17). Zatrucie rtęcią, jeśli nie zostanie we właściwy sposób wykryte, też zwykle początkowo diagnozowane jest jako zaburzenie psychiczne (18). Najczęstsze objawy to: 1. ekstremalna nieśmiałość, obojętność na innych, unikanie kontaktu z innymi, potrzeba bycia samym, 2. depresja, brak zainteresowania otoczeniem, niestabilność umysłowa, 3. zdenerwowanie, agresja, napady szału u dzieci i dorosłych, 4. niepokój i ciągłe poczucie lęku i 5. emocjonalna niestabilność. W wielu przypadkach stwierdzono neurozy, łącznie z cechami schizoidalnymi i obsesyjno-kompulsywnymi, natręctwa i zachowania stereotypowe a u jednej dwunastolatki ze stwierdzonym zatruciem rtęcią stwierdzono brak kontaktu wzrokowego (18-35).

Tabela 1. Zbiorcze porównanie objawów autystycznych i zatrucia rtęcią (bibliografia do ASD pogrubioną czcionką, bibliografia do zatrucia rtęcią wersalikami)

Zaburzenia psychiczne

Deficyty w kontaktach społecznych, nieśmiałość, wycofanie społeczne (1, 2, 130, 131; 21, 31, 45, 53, 132)

Powtarzalne, natrętne, stereotypowe zachowania, tendencje obsesyjno-kompulsywne (1, 2, 43, 48, 133; 20, 33-35, 132)

Depresja/cechy depresyjne, zmiany nastrojów, obniżony popęd, upośledzenia w rozpoznawaniu twarzy (14, 15, 17, 103, 134, 135; 19, 21, 24, 26, 31)

Niepokój, tendencje schizoidalne, nieracjonalny lęk (2, 15, 16; 21, 27, 29, 31)

Łatwe wpadanie w złość, agresja, napady szału (12, 13, 43; 18, 21, 22, 25)

Brak kontaktu wzrokowego, problemy w skupieniu wzroku (zatrucie rtęcią)/problemy w utrzymaniu uwagi (ASD) (3, 36, 136, 137; 18, 19, 34)

Zaburzenia komunikacji

Utrata mowy, opóźnienie rozwoju mowy, całkowity brak rozwoju mowy (1-3, 138, 139; 11, 23, 24, 27, 30, 37)

Problemy z wymawianiem głosek (3, 21, 25, 27, 39)

Deficyty w rozumieniu mowy (3, 4, 140; 9, 25, 34, 38)

Problemy z przypominaniem sobie słów (zatrucie rtęcią); echolalia, niewłaściwe użycie słów, problemy ze składnią (ASD) (1, 3, 36; 21, 27, 70)

Nieprawidłowości integracji sensorycznej

Podwrażliwość/nadwrażliwość okolicy ust (2, 49; 25, 28, 34, 39)

Nadwrażliwość na dźwięki, utrata słuchu w różnym stopniu (2, 47, 38; 19, 23-25, 39, 40)

Podwrażliwość/nadwrażliwość na dotyk, niechęć do bycia dotykanym (2, 49; 23, 24, 45, 53)

Nadwrażliwość na światło, niewyraźne widzenie (2, 50, 51; 18, 23, 31, 34, 45)

Zaburzenia ruchowe

Trzepotanie rękami, tiki, kręcenie się w kółko, bujanie, chodzenie na palcach, przyjmowanie dziwnych układów ciała (2, 3, 43, 44; 11, 19, 27, 30, 31, 34, 39)

Zaburzenia koordynacji oko-ręka, apraksja kończyn, drgawki (zatrucie rtęcią)/ problemy z intencjonalnym poruszaniem się i naśladownictwem (ASD) (2, 3, 36, 181; 25, 29, 32, 38, 70, 87)

Odbiegająca od normy postawa ciała, niezborność ruchów, zaburzenia koordynacji, problemy w siadaniu, leżeniu, pełzaniu i chodzeniu, problemy z jedną stroną ciała (4, 41, 42, 123; 18, 25, 31, 34, 29, 45)

Zaburzenia kognicyjne

Opóźnienie umysłowe, w niektórych wypadkach odwracalne (2, 3, 151, 152; 19, 25, 31, 39, 70)

Słaba koncentracja, deficyty uwagi, opóźnione reagowanie (zatrucie rtęcią)/ częste przerzucanie pola uwagi (ASD) (4, 36, 153; 21, 25, 31, 38, 141)

Niestandardowe wyniki testów na IQ; inteligencja werbalna wyższa od niewerbalnej (3, 4, 36; 31, 38)

Słaba pamięć krótkoterminowa, werbalna i słuchowa (26, 140; 21, 29, 31, 35, 38, 87, 141)

Słabe umiejętności odbioru otoczenie, opóźnienie czasu reakcji (zatrucie rtęcią)/ niższe wyniki w testach na czas (ASD) (4, 140, 181; 21, 29, 142)

Deficyty w rozumieniu abstrakcyjnych idei i symboliki, degeneracja wyższych funkcji umysłowych (zatrucie rtęcią)/ problemy w planowaniu i organizowaniu (ASD); problemy w wykonywaniu prostych poleceń (3, 4, 36, 153; 9, 18, 37, 57, 142)

Nadzwyczajne zachowania

Zachowania autoagresyjne, np. uderzanie głową o ścianę (3, 154; 11, 18, 53)

Cechy ADHD (2, 36, 155, 35, 70)

Podekscytowanie, płacz bez powodu, przesadna mimika (3, 154, 11, 23, 37, 88)

Problemy ze snem (2, 156, 157; 11, 22, 31)

Zaburzenia fizjologiczne

Obniżone lub podwyższone napięcie mięśniowe, zmniejszona siła mięśni szczególnie w górnych partiach ciała, problemy z żuciem i przełykaniem (3, 42, 145, 181; 19, 27, 31, 32, 39)

Wysypki, egzemy skórne, swędzenie (107, 146; 22, 26, 143)

Biegunki, bóle brzucha, zatwardzenia, kolki (107, 147-149; 18, 23, 26, 27, 31, 32)

Anoreksja (zatrucie rtęcią)/częste wymioty ; słaby apetyt (zatrucie rtęcią)/ wybiórcze jedzenie (ASD) (2, 123; 18, 22)

Zwiększona przepuszczalność jelita, (147, 150; 57, 144)

Trzecim kryterium diagnostycznym autyzmu jest upośledzenie komunikacji (1). Uwzględniając dane historyczne, w około połowie klasycznych przypadków autyzmu nie doszło do wykształcenia celowej mowy (2) i powszechne są też problemy z wymawianiem głosek (3). Wyżej funkcjonujące osoby mogą posiadać płynną mowę ale zwykle popełniają też błędy składniowe i gramatyczne (3, 36). W wielu przypadkach ASD, IQ werbalne jest niższe niż niewerbalne (3). Podobnie dorośli i dzieci zatrute rtęcią mają problemy z mową (9, 19, 37). W łagodniejszych przypadkach wyniki testów językowych mogą być niższe niż pozostałych (31, 38). Dzieci irackie, które zostały zatrute rtęcią po urodzeniu, miały problemy z wymową, od spowolnionej mowy do braku umiejętności wysławiania się; podczas gdy niemowlęta irackie, na które rtęć działała przed urodzeniem albo nie wykształciły mowy w ogóle albo miały poważne opóźnienia w dzieciństwie (23, 24, 39). Robotnicy z chorobą Szalonego Kapelusznika mieli problemy z wymową i przypominaniem sobie słów (21).

Prawie wszystkie przypadki ASD i zatrucia rtęcią dotyczą problemów z poruszaniem się (2, 30, 40). Niezgrabność albo brak koordynacji dotyczą wielu wyżej funkcjonujących autystów (41). Niemowlęta i dzieci u których później zdiagnozowano autyzm, mogły mieć problemy z prawidłowym raczkowaniem, mogły też łatwiej upadać przy nauce siadania lub stania, a problemy z poruszaniem zwykle dotyczą prawej strony ciała (42). Problemy z intencjonalnym poruszaniem się i naśladownictwem są powszechne w ASD, jak również różnorodne stereotypowe zachowania takie jak chodzenie na palcach, kołysanie się, przyjmowanie dziwnych postaw, kręcenie się w kółko, trzepotanie rękami (2, 3, 43, 44). Warto zauważyć to dlatego, że takie cechy wymieniane są też w literaturze dotyczącej zatrucia rtęcią: 1. dzieci w Iraku i Japonii, które nie umiały same stać, siedzieć czy pełzać (34. 39); 2. pacjenci z chorobą Minamata, którzy mieli problemy z poruszaniem się zlokalizowane po jednej stronie ciała i przypadek dziewczynki zatrutej oparami rtęci, która upadała na prawą stronę ciała (18, 34); 3. trzepotanie rękami u dziecka zatrutego zanieczyszczoną wieprzowiną (37) i u mężczyzny, któremu zrobiono zastrzyk z tiomersalu (27); 4. ruchy pląsawicowe przy zatruciu rtęcią (19); 5. chodzenie na palcach u dziecka z chorobą Minamata (34); 6. słaba koordynacja i niezgrabność u ofiar akrodynii (45); 7. bujanie się u dzieci z akrodynią (11) i 8. dziwne postawy ciała zaobserwowane u osób zatrutych oparami rtęci i cierpiących na akrodynię (11, 31). Obecne przy obu chorobach trzepotanie rękami jest interesujące, gdyż objaw ten jest rekomendowany jako diagnostyczny wskaźnik autyzmu (46).

W zasadzie wszystkie osoby z ASD mają problemy z integracją sensoryczną (2). Zaburzenia słuchu dotyczą mniejszej ilości osób i jest to utrata słuchu w różnym stopniu (2, 47). Nadwrażliwość lub podwrażliwość na dźwięki jest niemal uniwersalna (2, 48) a często też obecne są zaburzenia w pojmowaniu mowy (3). Nadwrażliwość albo podwrażliwość na ból jest też powszechna, jak również generalna awersja na dotyk, mogą również występować nadwrażliwość lub podwrażliwość okolicy ust, co jest diagnozowane nawet u dzieci do roku życia (2, 49). Może też zaistnieć wiele zaburzeń wzroku, w tym nadwrażliwość na światło (2, 50, 51, 52). Tak jak przy autyzmie, problemy z integracją sensoryczną są opisywane niemal we wszystkich przypadkach zatrucia rtęcią (40). Może ono prowadzić do utraty słuchu (40); rozumienie mowy jest często upośledzone (9, 34). Dzieci irackie, które w łonie matki były narażone na ekspozycję na rtęć, prezentowały przesadzone reakcje na hałas (23), podczas gdy w przypadku akrodynii pacjenci skarżyli się na nadwrażliwość słuchową (45). Nadwrażliwość lub podwrażliwość okolicy ust to bardzo powszechne zaburzenie (25, 28). Osoby cierpiące na akrodynię i dzieci irackie, które w łonie matki były narażone na ekspozycję na rtęć skarżyły się na duży ból przy urazie oraz miały awersję na dotyk (23, 24, 45, 53). Stwierdzono również wiele problemów ze wzrokiem, w tym fotofobię (18, 23, 24).

Porównanie odmienności biologicznych

Odmienności biologiczne stwierdzane zwykle w autyzmie obrazuje tabela nr 2, która zawieraj również opis korespondujących patologii przy zatruciu rtęcią. Niektóre wyjątkowe podobieństwa są szerzej opisane.

Autyzm to zaburzenie rozwoju, które jest określane jako „zaburzenie organizacji neurologicznej, czyli rozwoju połączeń dendrytowych, synaptogenezy i kompleksowych połączeń różnych części mózgu” (54). W badaniach stwierdzono obniżoną ekspresję komórek łączących ze sobą neurony (NCAMs), które są kluczowe dla rozwoju mózgu i właściwej struktury synaptycznej (55). Rtęć organiczna, która z łatwością przekracza barierę krew-mózg, obiera zwykle za swój cel komórki układu nerwowego (56); w pierwszej kolejności osadza się w mózgu w porównaniu do innych organów (40). Co więcej, chociaż komórki potrafią w dużej mierze odpowiadać na uszkodzenie przez rtęć regulując poziom glutationu (GSH), metalotioneiny, hemoksygenazy i innych protein chroniących przed stresem, neurony to komórki „wyraźnie uboższe w te reakcje” i dlatego nie potrafią bronić się przed rtęcią i są bardziej podatne na uszkodzenia spowodowane przez rtęć (56). W rozwijającym się mózgu, rtęć wpływa na strukturę neuronalną, upośledza podział komórek, zaburza działanie mikrotubuli i redukuje ilość NCAMs (28, 57-59).

Podczas gdy w wielu obszarach mózgu autystów stwierdza się uszkodzenia, pewne funkcje zostają nieuszkodzone (36). Przy uszkodzeniach spowodowanych zatruciem rtęcią występuje podobna selektywność (40). Liczne badania łączą autyzm z odmiennościami w zakresie ciała migdałowatego, hipokampu, zwojów nerwowych, komórek Purkinje i komórek ziarnistych w móżdżku, zwojach nerwowych, pniu mózgu (36, 60-69). Każdy z tych obszarów może zostać uszkodzony przez rtęć (10, 34, 40, 70-73). Migracja rtęci, w tym etylowej, do ciała migdałowatego zasługuje na szczególne podkreślenie, gdyż ten obszar mózgu zawiera neurony odpowiedzialne za kontakt wzrokowy (74) i jest szczególnie istotny dla autyzmu i dla rozwoju społecznego (65, 66, 75).

Tabela nr 2. Zbiorcze porównanie odmienności biologicznych w autyzmie i zatruciu rtęcią

Zatrucie rtęcią Autyzm

BiochemiaWiąże grupy SH; blokuje transport siarczanów w układzie pokarmowym, nerkach (40, 93) Niski poziom siarczanów (91, 92)
Redukuje dostępność glutationu; hamuje enzymy metabolizmu glutationy; glutation niezbędny jest w detoksykacji metali ciężkich; obniża poziom peroksydazy i reduktazy glutationu (97, 100, 161,162) Niski poziom glutationu, obniżone zdolności wątroby do detoksykacji, niewłaściwa aktywność peroksydazy glutationu w czerwonych krwinkach (91, 94,95)
Zaburza metabolizm puryny i pirymidyny (10, 97, 158,159) Zaburzenia metabolizmu puryny i pirymidyny prowadzą do objawów autystycznych (2, 101, 102)
Zaburza aktywność mitochondrialną, szczególnie w mózgu ( 160, 163, 164) Zaburza aktywność mitochondrialną, szczególnie w mózgu (76, 172)
Układ immunologicznyWrażliwe jednostki są podatna na alergie, astmę, objawy autoimmunologiczne, w szczególności podobne do reumatyzmu (8, 11, 18, 24, 28, 31, 111, 113) Większe prawdopodobieństwo występowania alergii, astmy, choroby autoimmunologiczne w rodzinie, obniżone IgA (103, 106-109, 115)
Może wystąpić reakcja autoimmunologiczna na komórki centralnego układu nerwowego, w szczególności białka anty-MBP (18, 111, 165) Stała immunologiczna reakcja w układzie nerwowym, obecne antyciała przeciwko mielinie (anty-MBP) (104, 105, 109, 110)
Powoduje nadprodukcję Th2, zabija/hamuje rozwój limfocytów, komórek-T i monocytów, zmniejszona aktywność NK T-komórek, obniżona lub zwiększona IFNg i IL-2 (100, 112, 117-120, 166) Nieprawidłowa produkcja Th2, obniżone odpowiedzi komórek-T, zmniejszona aktywność NK komórek-T, zwiększona IFNg i IL-2 (103, 108, 114-116, 173, 174)
Struktura centralnego układu nerwowegoSelektywnie atakuje obszary mózgu niezdolnego do detoksykacji albo zredukowania stresu oksydacyjnego (40, 56, 161) Specyficzne obszary patologii mózgu, pozostaje wiele funkcji (36)
Osadza się w ciele migdałowatym, hipokampie, zwojach mózgowych, tkance móżdżka; niszczy komórki Purkinje i ziarniste w móżdżku, czasem atakuje pień mózgu (10, 34, 40, 70-73) Patologie w ciele migdałowatym, hipokampie, zwojach mózgowych, tkance móżdżka; niszczy komórki Purkinje i ziarniste w móżdżku, czasem atakuje pień mózgu (36, 60-69)
Powoduje niewłaściwą cytostrukturę neuronalną, zaburza migrację neuronalną, mikrotubule i podział komórek, redukuje NCAMs (10, 28, 57-59, 161) Dezorganizacja neuronalna, zwiększona replikacja komórek mózgowych, zwiększona ilość gleju, redukcja NCAMs (4, 54, 55)
Postępująca mikrocefalia (24) Postępująca mikrocefalia i makrocefalia (175)
NeurochemiaZapobiega wydzielaniu się serotoniny i zaburza transport serotoniny, powoduje zaburzenia w zakresie wapnia (78, 79, 163, 167, 168) Zmniejszona synteza serotoniny u dzieci, niewłaściwy metabolizm wapnia (76, 77, 103, 179)
Zmienia system dopaminowy (8, 80) Albo wysokie albo niskie poziomy dopaminy (2, 177, 178)
Zwiększa poziom epinefryny i norepinefryny, blokując enzymy rozkładające epinefrynę (81, 160) Podwyższona epinefryna i norepinefryna (2)
Podwyższa poziom glutaminianu (21, 171) Podwyższony glutaminian i kwas aspartamowy (82, 176)
Prowadzi do obniżenia poziomu acetylocholiny (57, 170) Obniżenie poziomu acetylocholiny (83)
Powoduje demielinizację (22, 169) Demielinizacja w mózgu (105)
NeurofizjologiaPowoduje niewłaściwy zapis EEG, objawy epileptyczne, np. subtelne, o niskiej częstotliwości drgawki (27, 31, 34, 86-89) Powoduje niewłaściwy zapis EEG, objawy epileptyczne, np. subtelne, o niskiej częstotliwości drgawki (2, 4, 84, 85)
Powoduje niewłaściwe odpowiedzi układu równowagi, brak poczucia przestrzeni (9, 19, 34, 70) Powoduje niewłaściwe odpowiedzi układu równowagi, brak poczucia przestrzeni (27, 180)
Zaburzenia układu krążenia: słabe krążenie, podwyższone tętno, nadmierna potliwość (11, 18, 31, 45) Zaburzenia układu krążenia: słabe krążenie, podwyższone tętno, nadmierna potliwość (17,180)

W mózgach autystów stwierdzono zaburzenia neurotransmiterów, które są dokładnie identyczne jak te, które wynikają z zatrucia rtęcią; wysoka/niska serotonina i dopamina; zwiększona epinefryna i norepinefryna w osoczu i mózgu; zwiększony glutaminian i niski poziom acetylocholiny w hipokampie (2, 21, 76-83).

Gilbert i Coleman (2) szacują, że 35-45% autystyków dotyka epilepsja, Najnowsze badania dowodzą aktywności epileptycznej u 82% z 50 dzieci z autyzmem regresowym; w innych badaniach połowa dzieci z autyzmem miała nieprawidłowy zapis EEG podczas snu (84). Odmienności w zapisie EEG u autystów są niespecyficzne (85). Takie właśnie odmienności zostały ujawnione u wielu osób zatrutych rtęcią (18, 27, 34, 86-88). Wczesna ekspozycja na rtęć metylowaną zwiększa tendencję do epilepsji przy zredukowanej częstotliwości napadów (89), co odpowiada charakterowi napadów u dzieci autystycznych (84, 85). Fakt, że rtęć zwiększa poziom glutaminianu, również ma wpływ na tendencję do epilepsji (90).

Niektóre dzieci autystyczne mają niską zdolność oksydazowania cząsteczek siarki i niskie poziomy siarczanów (91, 92). Te odkrycia mogą być powiązane z zatruciem rtęcią gdyż: 1. rtęć preferencyjnie wiąże się z cząsteczkami siarki (SH) takimi, jak cysteina i GSH w ten sposób upośledzając wiele funkcji komórkowych (40) i 2. rtęć może nieodwracalnie blokować transporter NaSi i kotransporter NaSi-1, obecne w nerkach i układzie pokarmowych, w ten sposób zaburzając absorpcję siarki (93). Poza niskim poziomem siarczanów, wiele autystyków ma niskie poziomy GSH i nieprawidłowości w aktywności peroksydazy GSH w krwinkach czerwonych, jak również obniżoną funkcję detoksykującą wątroby (91, 94, 95). GSH uczestniczy w oczyszczaniu organizmu z metali ciężkich (96), GSH w wątrobie to podstawowa substancja oczyszczająca organizm z rtęci organicznej (40) a GSH w układzie nerwowym chroni układ ten przed rtęcią (56). Poprzez wiązanie się z GSH, zapobieganie absorpcji siarki albo hamowanie enzymów metabolizmu GSH (97) rtęć może czynić GSH mniej dostępnym dla organizmu. Niskie GSH może też pochodzić z przewlekłej infekcji (98, 99), o którą może być łatwiej przy upośledzeniu przez rtęć układu immunologicznego organizmu (100). Co więcej, rtęć zakłóca metabolizm puryny i pirymidyny (97, 10). Zmieniony metabolizm puryny i pirymidyny może powodować objawy autystyczne i klasyczny autyzm (2, 101, 102), co sugeruje kolejny mechanizm, w jaki rtęć może przyczynić się do powstania autyzmu.

Autystycy częściej mają alergie, astmę, obniżone IgA, zwiększoną ekspresję antygenu HLA-DR i brak receptorów interleukin-2, jak również historię chorób autoimmunologicznych w rodzinie. Występują podwyższone poziomy IgA i ANA w osoczu, antyciała IgM i IgG w mózgu i antyciała przeciwko MBP (mielinie) (103-110). Podobnie, opisano w literaturze atypowe odpowiedzi na rtęć pod postacią alergii czy reakcji autoimmunologicznych (8) a genetyczne predyspozycje do takich reakcji mogą tłumaczyć, dlaczego wrażliwość na rtęć tak różni się u różnych osób (88, 111). Dzieci z akrodynią częściej miały astmę i inne alergie (11) a antyciała IgG, ANA i MPB w mózgu ujawniono w mózgach osób zatrutych rtęcią (18, 111, 112). Myszy, generalnie odporne na choroby autoimmunologiczne, okazały się „w wysokim stopniu podatne na patologie układu immunologicznego spowodowane rtęcią” nawet przy najniższych dawkach (113). Co więcej, u wielu autystyków obniżona jest funkcja komórek NK, jak również aktywność Th2, jak również zwiększony poziom neopteryny w moczu, co wskazuje na ciągłą aktywację układu odpornościowego (103, 114-116). W zależności od predyspozycji genetycznej rtęć może spowodować aktywację układu odpornościowego, w tym aktywność Th2 i zmniejszoną aktywność NK (117-120).

Charakterystyka populacji

U większości dzieci, objawy autyzmu pojawiają się powoli, chociaż są też przypadki gwałtownego ich wystąpienia (3). Najwcześniejsze nieprawidłowości wykryto u 4-misięcznych dzieci i były to delikatne zaburzenia ruchowe, takie objawy zauważono też u dzieci 9-meisięcznych (49). Zaburzenia z mową i słuchem stały się widoczne dla rodziców i lekarzy w wieku 12-18 miesięcy (2). Szczepionki były podawane dzieciom w stałych odstępach czasu od niemowlęctwa aż do 18 miesięcy. Podczas gdy objawy zatrucia rtęcią mogą wystąpić nagle u wyjątkowo podatnych osób (11), zwykle jest „cichy okres”, podczas którego pojawiają się subtelne zmiany neurologiczne (121), po których następuje stopniowa intensyfikacja objawów. Pierwsze objawy są zwykle związane z odbiorem zmysłowym i poruszaniem, następnie deficyty mowy i słuchu i w końcu pełen obraz objawów zatrucia rtęcią (40). Dlatego zarówno zbieżność czasowa jak i sposób występowania objawów przy ASD spójne są z ich etiologią poszczepienną. Ta spójność wynika z relacji rodziców odnośnie dużych ilości rtęci w moczu i włosach młodszych dzieci z autyzmem, jak i z faktu poprawy po podjęciu chelatacji (122).

Wzrost ilości przypadków ASD jest zbieżne ze wzrostem ilości szczepień. Autyzm został po raz pierwszy opisany w 1943 roku wśród dzieci urodzonych w latach trzydziestych (123). Tiomersal został wprowadzony do szczepionek w latach trzydziestych (7). Do roku 1970 w badaniach szacowano ilość przypadków autyzmu jako 1 na 2000, a od 1970 do 1990 było to 1 na 1000 (124). Był to okres zwiększonej ilości szczepień na błonicę, tężec i krztusiec wśród dzieci w krajach rozwiniętych. We wczesnych latach 90. ilość przypadków autyzmu była już jak 1 do 500 (125) a w 2000 agencja rządowa CDC ogłosiła, że 1 na 150 dzieci jest dotknięte autyzmem (126). W późnych latach 80. i wczesnych 90. wprowadzono dwie nowe szczepionki z tiomersalem – HIB i na żółtaczkę typu B – zostały dodane do harmonogramu szczepień zalecanych (7).

Niemal wszystkie dzieci w Stanach Zjednoczonych są zaszczepione, jednak u nielicznych dochodzi do rozwoju autyzmu. Taka sama tendencja dotyczy działania rtęci na jednostkę, u kilku osób narażonych na ekspozycję na tym samym poziomie, zatrucie może wystąpić u jednej, podczas gdy u innych nie będzie objawów (9, 11, 28). Przykładem jest akrodynia, która pojawiła się we wczesnych latach XX wieku i spowodowana została rtęcią w proszkach do czyszczenia zębów. Cierpiało na nią 1 na 500-1000 dzieci, którym podano tę samą niską dawkę (28). Badania na myszach i ludziach pokazują, że podatność na rtęć jest o podłożu genetycznym, co w niektórych przypadkach wynika z podatności na choroby autoimmunologiczne (113, 34, 40). Czynnik genetyczny jest istotny również w ASD, co przejawia się w wysokim prawdopodobieństwie autyzmu u bliźniąt jednojajecznych i wyższym prawdopodobieństwie jego wystąpienia u rodzeństwa (4); autyzm jest również silniej obecny w rodzinach z chorobami autoimmunologicznymi (106).

Dodatkowo, autyzm częściej występuje u chłopców, niż u dziewcząt w stosunku 4:1 (2). Badania nad rtęcią u myszy i ludzi bardzo często dowodzą większej podatności u mężczyzn niż u kobiet, za wyjątkiem uszkodzenia nerek (57). Wysokie dawki mają wpływ na osoby obojga płci, przy niskich dawkach zatruci są tylko mężczyźni (38, 40, 127).

Dyskusja

Wykazaliśmy, że każda podstawowa cecha charakterystyczna dla autyzmu występuje w przynajmniej kilkunastu przypadkach zatrucia rtęcią. Ostatnio FDA i AAP wykryły, że ilość rtęci podawana dzieciom w szczepionkach przekroczyła poziom bezpieczny. Zbieżność czasowa podawania dzieciom rtęci współgra z pojawieniem się objawów autyzmu. Doniesienia rodziców o rtęci we włosie i moczu dzieci autystycznych wskazują na ekspozycję na rtęć. Dlatego należy stwierdzić, że standardowe kryteria diagnostyczne zatrucia rtęcią – widoczne objawy związane z ekspozycją i poziom rtęci w próbkach biologicznych (11, 31) – zostają wypełnione w przypadku autyzmu. W związku z tym rtęć może stanowić ważny czynnik etiologiczny przynajmniej w niektórych przypadkach autyzmu regresowego. Co więcej, każdy znany przypadek zatrucia rtęcią w przeszłości określano jako swoistą jednostkę chorobową – chorobę Minamata, akrodynię, chorobę Szalonego Kapelusznika – nie zaś jako autyzm, co sugeruje że zatrucie rtęcią które może mieć związek z autyzmem, nie zostało jeszcze właściwie scharakteryzowane; a jako iż większość niemowląt otrzymuje rtęć w szczepionkach i efekty tej rtęci na dzieci nigdy nie zostało poddane badaniom (129), tiomersal w szczepionkach powinien być rozważany jako możliwa przyczyna autyzmu. Możliwe jest też, że rtęć ze szczepionek stanowi dodatkowe obciążenie dla dziecka, oprócz rtęci pochodzącej z plomb amalgamatowych matki, konsumpcji ryb czy źródeł środowiskowych.

Wnioski

Historia akrodynii ilustruje fakt, że ciężkie zaburzenie dotykające małej ale znaczącej ilości dzieci, może powstać z powodu ekspozycji na niskie dawki rtęci. Niniejsza praca dowodzi prawdopodobieństwa, że rtęć może być etiologicznie znacząca w kontekście ASD, przy czym chodzi o rtęć pochodzącą ze szczepionek a nie ze środków do czyszczenia zębów. Z uwagi na wyjątkowe podobieństwa pomiędzy autyzmem a zatruciem rtęcią, istnieje bardzo duże prawdopodobieństwo występowania związku przyczynowego. W związku z zaistnieniem tej możliwości, tiomersal powinien zostać wycofany ze wszystkich szczepionek a mechanizmy działania rtęci na dzieci powinny zostać szczegółowo przeanalizowane. Przy dużej ilości dzieci aktualnie diagnozowanych z ASD, analiza terapii dla osób zatrutych rtęcią takich jak chelatacja, może być korzystna dla tej dużej i ciągle rosnącej populacji dzieci.

Bibliografia

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn. Washington DC.: American Psychiatric Association, 1994.
  2. Gillberg C., Coleman M. The Biology of the Autistic Syndromes, 2nd edn. London: Mac Keith Press, 1992.
  3. Filipek P., Accardo P., Baranek G. et al. The screening and diagnosis of autistic spectrum disorders. J Autism Dev Disord 1999; 29(6): 439-484.
  4. Bailey A., Phillips W., Rutter M. Autism: towards an integration of clinical, genetic, neuro-psychological, and neurobiological perspectives. J Child Psychol Psychiatry 1996; 37(1): 89-126.
  5. Suzuki T., Takemoto T. I., Kashiwazaki H., Miyama T. Metabolic fate of ethylmercury salts in man and animal. In: Miller M. W., Clarkson T. W., (eds) Mercury, Mercurials, and Mercaptans. Springfield: Charles C. Thomas, 1973: 209-233.
  6. Halsey N. A. Perspective on the use of thimerosal-containing vaccines. Presentation at the National Vaccine Advisory Committee Workshop on Thimerosal and Vaccines, August 11-12, 1999. Institute of Vaccine Safety website; www.vaccinesafety.edu.
  7. Egan, W. M. Thimerosal in Vaccines. Presentation to the FDA, September 14, 1999.
  8. 8. Gosselin R. E., Smith R. P., Hodge H. C. Mercury. Clinical Toxicology of Commercial Products, Section III, Therapeutic Index, 5th edn. Baltimore: Williams & Wilkins, 1984: 262-271.
  9. 9. Dales L. D. The neurotoxicity of alkyl mercury compounds. AmJ Med 1972; 53: 219-232.
  10. 10. Koos B. J., Longo L. D., Mercury toxicity in the pregnant woman, fetus, and newborn infant. Am J Obstet Gynecol 1976; 126(3): 390-406.
  11. Warkany J., Hubbard D. H. Acrodynia and mercury. JPediatrics 1953; 42: 365-386.
  12. McDougle C. J., Brodkin E. S., Yeung P. P., Naylor S. T., Cohen D. J., Price L. H. Risperidone in adults with autism or pervasive developmental disorder. J Child Adolesc Psychopharmacol 1995; 5(4): 273-282.
  13. Jaselskis C., Cook E., Fletcher K., Bennett L. Clonidine treatment of hyperactive and impulsive children with autistic disorder. J Clin Pharmacol 1992.
  14. Piven J., Palmer P. Psychiatric disorder and the broad autism phenotype: evidence from a family study of multiple-incidence autism families. Am J Psychiatry1999; 156(4): 557-563.
  15. Clarke D., Baxter M., Perry D., Prasher V. The diagnosis of affective and psychotic disorders in adults with autism: seven case reports. Autism 1999; 3(2): 149-164.
  16. Muris P., Steerneman P., Merckelbach H., Holdrinet I., Meesters C. Comorbid anxiety symptoms in children with pervasive developmental disorders. J Anxiety Disord 1998; 12(4): 387-393.
  17. Wing L., Attwood A. Syndromes of autism and atypical development. In: Handbook of Autism and Pervasive Developmental Disorders, New York: John Wiley & Sons, 1987: 3-19.
  18. 18. Fagala G. E., Wigg C. L. Psychiatric manifestions of mercury poisoning. J Am Acad Child Adolesc Psychiatry1992; 31(2): 306-311.
  19. Kark R. A., Poskanzer D. C., Bullock J. D., Boylen G. Mercury poisoning and its treatment with N-acetyl-D., L-penicillamine. N Engl J Med 1971; 285: 10-16.
  20. White R. F., Feldman R. G., Moss M. B., Proctor S. P. Magnetic resonance imaging (MRI), neurobehavioral testing, and toxic encephalopathy: two cases. Environ Res 1993; 61: 117-123.
  21. O’Carroll R. E., Masterton G., Dougnall N., Ebmeier K. P. The neuropsychiatric sequelae of mercury poisoning: the Mad Hatters disease revisited. Br J Psychiatry 1995; 167(1): 95-98.
  22. Florentine M. J., Sanfilippo II D. J. Grand rounds: elemental mercury poisoning. Clin Pharm 1991; 10: 213-221.
  23. Amin-Zaki, L., Elhassani S., Majeed M. A., Clarkson T. W., Doherty R. A., Greenwood M., Intra-uterine methylmercury poisoning in Iraq. Pediatrics 1974; 54(5): 587-595.
  24. Amin-Zaki L., Majeed M. A., Elhassani S. B., Clarkson T. W., Greenwood M. R., Doherty R. A., Prenatal methylmercury poisoning. Am J Disabled Child 1979; 133: 172-177.
  25. Joselow M. M., Louria D. B., Browder A. A., Mercurialism: environmental and occupational aspects. Ann Intern Med 1972; 76: 119-130.
  26. 26. Smith D. Mental Effects of Mercury Poisoning. Presentation before the Section on Family Practice, Southern Medical Association, 71st Annual Scientific Assembly, November 6-9, 1977.
  27. Lowell J. A., Burgess S., Shenoy S., Curci J. A., Peters M., Howard T. K. Mercury poisoning associated with high-dose hepatitis-B immune globulin administration after liver transplantation for chronic hepatitis B. Liver Transpl Surg 1996; 2(6): 475-478.
  28. Clarkson, T. The toxicology of mercury. Crit Rev Clin Lab Sci 1997; 34(3): 369-403.
  29. Camerino D., Cassito M. G., Desideri E., Angotzi G. Behavior of some psychological parameters of a population of a Hg extraction plant. Clin Toxicol 1981; 18(11): 1299-1309.
  30. Snyder R. D. The involuntary movements of chronic mercury poisoning. Arch Neurol 1972; 26: 379-381.
  31. Vroom F. Q., Greer M. Mercury vapour intoxication. Brain 1972; 95: 305-318.
  32. Adams C. R., Ziegler D. K., Lin J. T. Mercury intoxication simulating amyotrophic lateral sclerosis. JAMA 1983; 250: 642-643.
  33. 33. Cuomo V., Ambrosi L., Annau Z., Cagiano R., Brunello N., Racagni G. Behavioural and neurochemical changes in offspring of rats exposed to methylmercury during gestation. Neuobehav Toxicol Teratol 1984; 6(3): 249-254.
  34. Tsubaki T., Irukayama K., eds. Minamata Disease. Amsterdam: Elsevier Scientific Publishing 1977
  35. Elsner J. Testing strategies in behavioral teratology. III. Microanalysis of behavior. Neurobehav Toxicol Teratol 1986; 8: 573-584.
  36. 36. Dawson G. Brief report: neuropsychology of autism: a report on the state of the science. J Autism Dev Disord 1996; 26(2): 179-184.
  37. Pierce P. E., Thompson J. F., MPH, Likosky W. H. MD, Nickey L. N. MD, Barhtel W. F., Hinman A. R. MD, MPH. Alkyl mercury poisoning in humans. JAMA 1972; 220(11): 1439-1442.
  38. Grandjean P., Weihe P., White R. F., Debes F. Cognitive performance of children prenatally exposed to “safe” levels of methylmercury. Environ Res 1998; 77(2): 165-172.
  39. Amin-Zaki L., Majeed M. A., Clarkson T. W., Greenwood M. R. Methylmercury poisoning in Iraqi children: clinical observations over two years. BMJ1978; March 1: 613-616.
  40. Clarkson T. W. Mercury: major issues in environmental health. Environ Health Perspect 1992; 100: 31-38.
  41. 41. Kugler B. The differentiation between autism and Asperger
    syndrome. Autism 1998; 2(1): 11-32.
  42. 42. Teitelbaum P., Teitelbaum O., Nye J., Fryman J., Maurer R. G. Movement analysis in infancy may be useful for early diagnosis of autism. Proc Natl Acad Sci USA 1998; 95: 13982-13987.
  43. Tsai L. Y. Brief report: comorbid psychiatric disorders of autistic disorder. J Autism Dev Disord 1996; 26(2): 159-164.
  44. Cesaroni L., Garber M. Exploring the experience of autism through firsthand accounts. J Autism Dev Disord 1991; 21 (3): 303-313.
  45. Farnsworth D. Pink Disease Survey Results. Pink Disease Support Group Site, 1997; www.users.bigpond.com/difarnsworth.
  46. Brasic J. R. Movements in autistic disorder. Med Hypotheses 1999; 53: 48-49.
  47. 47. Rosenhall U., Nordin V., Sandstrom M., Ahlsen G., Gillberg C. Autism and hearing loss. J Autism Dev Disord 1999; 29(5): 349-358.
  48. Roux S., Adrien J-L., Bruneau N., Malvy J., Barthelemy C. Behavior profiles within a population of 145 children with autism using the Behaviour Summarized Evaluation scale: influence of developmental age. Autism 1998; 2(4): 345-366.
  49. Baranek G. Autism during infancy: a retrospective video analysis of sensory-motor and social behaviors and 9-12 months of age. J Autism Dev Disord 1999; 29(3): 213-224.
  50. ONeill M., Jones R. S. P. Sensory-perceptual abnormalities in autism: a case for more research? J Autism Dev Disord 1997; 27(3): 283-293.
  51. 51. Sperry V. W. Family and personal section: from the inside out – a view of the world as seen by one with Asperger syndrome. Autism 1998; 2(1): 81-86.
  52. 52. Cass H. Visual impairment and autism: current questions and future research. Autism 1998; 2(2): 117-138.
  53. Manser N. Neville’s (a Pinkie) Recollection of Pink Disease. Pink Disease Support Group; www.users.bigpond.com/difarnsworth.
  54. Minshew N. J. Brief report: brain mechanisms in autism: functional and structural abnormalities. J Autism Dev Disord 1996; 26(2): 205-209.
  55. Plioplys A. V., Hemmens S. E., Regan C. M. Expression of a neural cell adhesion molecule serum fragment is depressed in autism. JNeuropsychiatry Clin Neurosci 1990; 2(4): 413-417
  56. Sarafian T. A., Bredesen D. E., Verity M. A. Cellular resistance to methylmercury. Neurotoxicology 1996 Spring Abstract; 17(1): 27-36.
  57. 57. Hassett-Sipple B., Swartout J., Schoeny R. Vol. V. Health effects of mercury and mercury compounds. Mercury Study Report to Congress. Environmental Protection Agency (EPA), December 1997.
  58. 58. Pendergrass J. C., Haley B. E., Vimy M. J., Winfield S. A., Lorscheider F. L. Mercury vapor inhalation inhibits binding of GTP to tubulin in rat brain: similarity to a molecular lesion in Alzheimer diseased brain. Neurotoxicology 1997; 18(2): 315-324.
  59. Dey P. M., Gochfeld M., Reuhl K. R. Developmental methymercury administration alters cerebellar PSA-NCAM expression and Golgi sialyltransferase activity. Brain Res 1999; 845(2): 139-151.
  60. Courchesne E. et al. More evidence links autism, cerebellar defects. reviewed in Autism Research Review International 1994; 8(2): 1, 7.
  61. Ritvo E. R., Freeman B. J., Scheibel A. B. et al. Lower Purkinje cell counts in the cerebella of four autistic subjects: intitial findings of the UCLA-NSAC Autopsy Research Report. Am J Psychiatry 1986; 143: 862-866.
  62. Hoon A. H., Riess A. L. The mesial-temporal lobe and autism: case report and review. Dev Med Child Neurol 1992; 34: 252-265.
  63. Piven J., Berthier M., Starkstein S., Nehme E., Pearlson G., Folstein S. Magnetic resonance imaging evidence for a defect of cerebral cortical development in autism. Am J Psychiatry 1990; 147(6): 734-739.
  64. Abell F., Krams M., Ashburner J. et al. The neuroanatomy of autism: a voxel-based whole brain analysis of structural scans. Neuroreport 1999; 10(8): 1647-1651.
  65. Aylward E. H., Minshew N. J., Goldstein G. et al. MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults. Neurology 1999; 53(9): 2145-2150.
  66. Otsuka H. Brain metabolites in the hippocampus-amygdala region and cerebellum in autism: an 1H-MR spectroscopy study. Neuroradiology 1999; July.
  67. Sears L. L. An MRI study of the basal ganglia in autism. Prog Neuropsychopharmacol Biol Psychiatry 1999; May.
  68. Hashimoto T., Tayama M., Murakawa K. et al. Development of the brainstem and cerebellum in autistic patients. J Autism Dev Disord 1995; 25(1): 1-18.
  69. McClelland R. J., Eyre D., Watson D., Calvert J. A neuro-physiological study of autistic children. Electroencephalogr Clin Neurophysiol 1985; 61: 16.
  70. Davis L. E., Kornfeld M., Mooney H. S. et al. Methylmercury poisoning: long term clinical, radiological, toxicological, and pathological studies of an affected family. Ann Neurol 1994;
  71. 35(6): 680-688.
  72. 71. Larkfors L., Oskarsson A., Sundberg J., Ebendal T. Methyl-mercury induced alterations in the nerve growth factor level in the developing brain. Brain Res Dev Brain Res 1991; 62(2): 287-291.
  73. Lorscheider F. L., Vimy M. J., Summers A. O. Mercury exposure from “silver” tooth fillings: emerging evidence questions a traditional dental paradigm. FASEB J1995; 9: 504-508.
  74. Magos L., Brown A. W., Sparrow S., Bailey E., Snowden R. T., Skipp W. R. The comparative toxicology of ethyl-and methylmercury. Arch Toxicol 1985; 57(4): 260-267.
  75. Rolls E. T. Memory systems in the brain. Ann Rev Psychol 2000; 51 : 599-630.
  76. 75. Bachevalier J. Medial temporal lobe structures: a review of clinical and experimental findings. Neuropsychologia 1994; 32: 627-648.
  77. Chugani D. C., Muzik O., Behen M. et al. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 1999; 45.
  78. Cook E. H. Autism: review of neurochemical investigation. Synapse 1990; 6: 292-308.
  79. OKusky J. R., Boyes B. E., McGeer E. G. Methylmercury-induced movement and postural disorders in developing rat: regional analysis of brain catecholamines and indoleamines. Brain Res 1988; 439(1-2): 138-146.
  80. Nishio H., Nezasa K., Hirano J., Nakata Y. Effects of thimerosal, an organic sulfhydryl modifying agent, on serotonin transport activity into rabbit blood platelets. Neurochem Int 1996; 29(4): 391-396.
  81. McKay S. J., Reynolds J. N., Racz W. J. Effects of mercury compounds on the spontaneous and potassium-evoked release of [3H]dopamine from mouse striatal slices. Can J Physiol Pharmacol 1986; 64(12): 1507-1514.
  82. Hrdina P. D., Peters D. A., Singhal R. L. Effects of chronic exposure to cadmium, lead and mercury of brain biogenic amines in the rat. Research Communications in Chemistry, Pathology and Pharmacology1976; 15(3): 483-493.
  83. Moreno H., Borjas L., Arrieta A. et al. Clinical heterogeneity of the autistic syndrome: a study of 60 families (Spanish). Invest Clin 1992; 33(1): 13-31.
  84. Perry E., Lee M., Court J., Perry R. Cholinergic Activities in Autism: Nicotinic and Muscarinic Receptor Abnormalities in the Cerebral Cortex. Presentation to Cure Autism Now, 2000.
  85. Lewine magnetoenchalography in children with an autistic epileptiform regression. J Pediatrics 1999; 405-418.
  86. Nass R., Gross A., Devinsky O. Autism and autistic epileptiform regression with occipital spikes. Dev Med Child Neurol 1998;
  87. 40(7): 453-8.
  88. 86. Brenner R. P., Snyder R. D. Late EEG finding and clinical status after organic mercury poisoning. Arch Neurol 1980; 37(5): 282-284.
  89. 87. Piikivi L., Tolonen U. EEG findings in chlor-alkali workers subject to low long term exposure to mercury vapor. Br J Ind Med 1989; 46(6): 370-375.
  90. 88. Rohyans J., Walson P. D., Wood G. A., MacDonald W. A. Mercury toxicity following merthiolate ear irrigations. J Pediatr 1984: 311-313.
  91. 89. Szasz A., Barna B., Szupera Z. et al. Chronic low-dose maternal exposure to methylmercury enhances
    epileptogenicity in developing rats. Int J Devl Neurosci 1999; 17(7): 733-742.
  92. Scheyer R. D. Involvement of glutamate in human epileptic activities. Prog Brain Res 1998; 116: 359-369.
  93. OReilly B. A., Waring R. Enzyme and sulfur oxidation deficiencies in autistic children with known food/chemical intolerances. Journal of Orthomolecular Medicine 1993; 4: 198-200.
  94. 92. Alberti A., Pirrone P., Elia M., Waring R. H., Romano C. Sulphation deficit in “low-functioning” autistic children: a pilot study. Biol Psychiatry1999; 46(3): 420-424.
  95. 93. Markovich D., Knight D., Renal Na-Si cotransporter NaSi-1 is inhibited by heavy metals. American Journal of Renal Physiology1998; 274(2): 283-289.
  96. 94. Golse B., Debray-Ritzen P., Durosay P., Puget K., Michelson A. M. Alterations in two enzymes: superoxide dismutase and glutathion peroxidase in developmental infantile psychosis. Rev Neurol (Paris) 1978; 134(11): 699-705.
  97. 95. Edelson S. B., Cantor D. S. Autism: xenobiotic influences. Toxicol Ind Health 1998; 14(4): 553-563.
  98. Fuchs J., Packer L., Zimmer G. Lipoic Acid in Health and Disease. Marcel Dekker, 1997.
  99. Williams M. V., Winters T., Waddell K. S. In vivo effects of Mercury (II) on deoxyuridine triphosphate nucleotidohydrolase, DNA polymerase (a,3), uracil-DNA glycosylase activities in cultured human cells: relationship to DNA damage, DNA repair, and cytotoxicity. Mol Pharmacol 1987; 31 (2): 200-207.
  100. Aukrust P. et al. Decreased levels of total and reduced glutathione in CD4+ lymphocytes in common variable immunodeficiency are associated with activation of the tumor necrosis factor system: possible immunopathogenic role of oxidative stress. Blood 1995; 86(4): 1383-1391.
  101. Jaffe J. S. et al. Functional abnormalities of CD8+ t cells define a unique subset of patients with common variable
  102. immunodeficiency. Blood 1993; 82(1): 192-201.
  103. 100. Shenker B. J., Guo T. L., Shapiro I. M. Low-level methylmercury exposure causes human T-cells to undergo apoptosis: evidence of mitochondrial dysfunction. Environ Res 1998; Section A 77(2): 149-159.
  104. 101. Page T., Yu A., Fontanesi J., Nyhan W. L. Developmental disorder associated with increased cellular nucleotidase activity. Proc Natl Acad Sci USA 1997; 94: 11601-11606.
  105. 102. Page T., Coleman M. Purine metabolism abnormalities in a hyperuricosuric subclass of autism. Biochim Biophys Acta 2000; 1500(3): 291-296.
  106. Plioplys A. Autism: Biomedical Perspectives. Presentation for the Autism Society of America meeting, July 1989.
  107. Connolly A. M. et al. Serum autoantibodies to brain in Landau-Kleffner variant, autism, and other neurologie disorders. J Pediatr 1999; 134(5): 607-613.
  108. Singh V., Warren R., Odell J., Warren W., Cole P. Antibodies to myelin basie protein in children with autistic behavior. Brain Behav Immun 1993; 7(1): 97-103.
  109. Comi A. M., Zimmerman A. et al. Familial clustering of autoimmune disorders and evaluation of medical risk factors in autism. J Child Neurol 1999; 14: 388-394.
  110. Whiteley P., Rogers J., Shattock P. Clinical features associated with autism: observations of symptoms outside the diagnostic boundaries of autistic spectrum disorders. Autism 1998; 2(4): 415-422.
  111. Warren R. P., Margaretten N. C., Pace N. C., Foster A. Immune abnormalities in patients with autism. J Autism Dev Disord 1986; 16(2): 189-197.
  112. Zimmerman A., Frye V. H., Potter N. T. Immunological aspects of autism. International Journal ofPediatrics 1993; 8: 199-204.
  113. Weitzman A., Weisman R., Szekely G. A., Wijsenbeek H., Livni E. Abnormal immune response to brain tissue antigen in the syndrome of autism. Am J Psychiatry 1982; 139(11):
  114. 1462-1465.
  115. Nielsen J. B., Hultman P. Experimental studies on genetically determined susceptibility to mercury-induced autoimmune response. Ren Fail 1999; 21(3&4): 343-348.
  116. Hu H., Abedi-Valugerdi M., Moller G. Pretreatment of lymphocytes with mercury in vitro induces a response in T cells from genetically determined low-responders and a shift of the interleukin profile. Immunology 1997; 90: 198-204.
  117. Al-Balaghi S., Moller E., Moller G., Abedi-Valugerdi M. Mercury induces polyclonal B cell activation, autoantibody production and renal immune complex deposits in young (NZB x NZW) F1 hybrids. Eur JImmunol 1996; 26(7): 1519-1526.
  118. 114. Warren R. P., Margaretten N. C., Foster A., Reduced natural killer cell activity in autism. J Am Acad Child Adolesc Psychiatry 1987; 26(3): 333-335.
  119. 115. Gupta S., Aggarwal S., Heads C., Brief report: dysregulated immune system in children with autism: beneficial effects of intravenous immune globulin on autistic characteristics, J Autism Dev Disord 1996; 26(4): 439-452.
  120. Messahel S., Pheasant A. E., Pall H., Ahmed-Choudhury J., Sungum-Paliwal R. S., Vostanis P. Urinary levels of neopterin and biopterin in autism. Neurosci Lett 1998; 241 (1): 17-20.
  121. Johansson U., Hansson-Georgiadis H., Hultman P. The genotype determines the B cell response in mercury-treated mice. Int Arch Allergy Immunol 1998; 116(4): 295-305.
  122. Bagenstose L. M., Salgame P., Monestier M. Murine mercury-induced autoimmunity: a model of chemically related autoimmunity in humans. Immunol Res 1999; 20(1): 67-78.
  123. Hu H., Moller G., Abedi-Valugerdi M. Mechanism of mercury-induced autoimmunity: both T helper 1- and T helper 2-type responses are involved. Immunology 1999; 96(3): 348-357
  124. Ilback N. G. Effects of methyl mercury exposure on spleen and blood natural-killer (NK) cell-activity in the mouse. Toxicology 1991; 67(1): 117-124.
  125. 121. Mattsson J. R., Miller E., Alligood J. P., Koering J. E., Levin S. G. Early effects of methylmercury on the visual evoked response of the dog. Neurotoxicology 1981; 2(3): 499-514.
  126. Redwood, L. Chelation case histories. Http://tlredwood.home.mindspring.com/case_studies.htm.
  127. Kanner L. Autistic disturbances of affective contact. The Nervous Child 1942-1943; 2(3): 217-250.
  128. 124. Gilberg C., Wing L. Autism: not an extremely rare disorder. Acta Psychiatr Scand 1999; 99(6): 399-406.
  129. 125. Bristol M., Cohen D., Costello E. et al. State of the science in autism: report to the National Institutes of Health. J Autism Dev Disord 1996; 26(2): 121-157.
  130. Prevalence of Autism in Brick Township, New Jersey, 1998: Community Report. Centers for Disease Control and Prevention, April 2000; www.cdc.gov/nceh/cddh/dd/rpttoc.
  131. Sager, P. R., Aschner, M., Rodier, P. M. Persistent differential alteration in developing cerebellar cortex of male and female mice after methylmercury exposure. Dev Brain Res 1984; 12: 1-11.
  132. 128. Rossi A. D., Ahlbom E., Ogren S. O., Nicotera P., Ceccatelli S. Prenatal exposure to methylmercury alters locomotor activity of male but not female rats. Exp Brain Res 1997; 117(3): 428-436.
  133. Uproar over a little-known preservative, thimerosal, jostles U. S. hepatitis B vaccination policy. Hepatitis Control Report 1999 Summer; 4(2).
  134. Capps L., Kehres J., Sigman M. Conversational abilities among children with autism and children with developmental delays. Autism 1998; 2(4): 325-44.
  135. Tonge B. J., Brereton A. V., Gray K. M., Einfeld S. L. Behavioural and emotional disturbance in high-functioning autism and Aspergers syndrome. Autism 1999; 3(2): 117-130.
  136. Ross W. Donald, Gechman A., Sholiton M., Paul H. Alertness to neuropsychiatric manifestations. Compr Psychiatry 1977; 18(6) : 595-598.
  137. 133. Howlin P. Outcome in adult life for more able individuals with autism or Asperger syndrome. Autism 2000; 4(1): 63-84.
  138. Klin A., Sparrow S. S., de Bilt A. et al. A normed study of face recognition in autism and related disorders. J Aut Dev Disorders 1999; 29(6): 499-508.
  139. DeLong G. R. Autism: new data suggest a new hypothesis. Neurolog? 1999; 52(5): 911-916.
  140. Bernabei P., Camaioni L., Levi G. An evaluation of early development in children with autism and pervasive developmental disorders from home movies: preliminary
  141. findings. Autism 1998; 2(3): 243-258.
  142. Baron-Cohen S., Allen J., Gillberg C. Can autism be detected at 18 months: the needle, the haystack, and the CHAT. Br J Psychiatry 1992; 161: 839-843.
  143. Eisenmayer R. et al. Delayed language onset as a predictor of clinical symptoms in pervasive developmental disorders. J Autism Dev Disord 1998; 28(6): 527-533.
  144. 139. Prizant B. M. Brief report: communication, language, social, and emotional development. J Autism Dev Disord 1996; 26(2): 173-178.
  145. Grandin T. The learning style of people with autism: an autobiography. Teaching Children with Autism. Kathleen Ann Quill, ed., 1995: 33-52.
  146. Hua M. S., Huang C. C., Yang Y. J. Chronic elemental mercury intoxication: neuropsychological follow up case study. Brain Inj 1996; 10(5): 377-384.
  147. 142. Yeates K. O., Mortensen M. E. Acute and chronic neuropsychological consequences of mercury vapor poisoning in two early adolescents. J Clin Exp Neuropsychol 1994; 16(2): 209-222.
  148. 143. Aronow R., Fleischmann L. Mercury poisoning in children. Clin Pediatr 1976; 15(10): 936-945.
  149. 144. Watzl B., Abrahamse S. L., Treptow-van Lishaut S. et al. Enhancement of ovalbumin-induced antibody production and mucosal mast cell response by mercury. Food Chem Toxicol 1999; 37(6): 627-637.
  150. Church C., Coplan J. The high functioning autistic experience: birth to preteen years. J Pediatr Health Care 1995; 9: 22-29.
  151. O’Neill J. L. Through the Eyes of Aliens. Jessica Kingsley Publishers, 1999.
  152. Deufemia P., Celli M., Finocchiaro R. et al. Abnormal intestinal permeability in children with autism. Acta Paediatr 1996; 85: 1076-1079.
  153. Horvath K., Papadimitriou J. C., Rabsztyn A., Drachenberg C., Tildon J. T. Gastrointestinal abnormalities in children with autistic disorder. J Pediatr 1999; 135(5): 559-563.
  154. Wakefield A. J., Murch S. H., Anthony A., et al. Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 1998; 351: 637-641.
  155. 150. Shattock P., Savery D. Autism as a Metabolic Disorder. Sunderland, UK: Autism Research Unit, University of Sunderland, 1997.
  156. 151. Edelson M. G., Schubert D. T., Edelson S. M. Factors predicting intelligence cores on the TONI in individuals with autism. Focus on Autism and Other Developmental Disabilities 1998; 13(1): 17-26.
  157. Long term follow-up: early intervention effects lasting. ARI Newsletter, review 1993; 7(1): 1&6.
  158. Rumsey J. Conceptual problem-solving in highly verbal, nonretarded autistic men. J Autism Dev Disord 1985; 15(1): 23-36.
  159. Gedye A. Anatomy of self-injurious, stereotypic, and aggressive movements: evidence for involuntary explanation. J Clin Psychol 1992; 48(6): 766-778.
  160. Kim J. A., Szatmari P., Bryson S. E., Streiner D. L., Wilson F. J. The prevalence of anxiety and mood problems among children with autism and Asperger syndrome. Autism 2000; 4(2): 117-133.
  161. Richdale A. L. Sleep problems in autism: prevalence, cause, and intervention. Dev Med Child Neurol 1999; 41 (1): 60-66.
  162. Stores G., Wiggs L. Abnormal sleeping patterns associated with autism: a brief review of research findings, assessment methods and treatment strategies. Autism 1998; 2(2): 157-170.
  163. Sarafian T., Verity M. A. Altered patterns of protein phosphorylation and synthesis caused by methyl mercury in cerebellar granule cell culture. J Neurochem 1990; 55(3):
  164. 922-929.
  165. Rosenspire A. J., Bodepudi S., Mathews M., McCabe M. J. Jr. Low levels of ionic mercury modulate protein tyrosine phosphorylation in lymphocytes. Int J Immunopharmacol 1998; 20(12): 697-707.
  166. Rajanna B., Hobson M. Influence of mercury on uptake of [3H]dopamine and [3H]norepinephrine by rat brain synaptosomes. Toxicol Lett 1985; 27(1-3): 7-14.
  167. Aschner M., Mullaney K. J., Wagoner D., Lash L. H., Kimelberg H. K. Intracellular glutathione (GSH) levels modulate mercuric chloride (MC)- and methylmercuric chloride (MeHgCl)-induced amino acid release from neonatal rat primary astrocytes cultures. Brain Res 1994; (664); 133-140.
  168. Ashour H., Abdel-Rahman M., Khodair A. The mechanism of methyl mercury toxicity in isolated rat hepatocytes. Toxicol Lett 1993; 69(1): 87-96.
  169. Atchison W. D., Hare M. F. Mechanisms of methylmercury-induced neurotoxicity, FASEB J1994; 8(9): 622-629.
  170. Faro L. R. F., Nascimento J. L. M., Alfonso M., Duran R. Acute administration of methylmercury changes in vivo dopamine release from rat striatum. Bull Environ Contam Toxicol 1998; 60: 632-638.
  171. El-Fawal H. A., Waterman S. J., De Feo A., Shamy M. Y. Neuroimmunotoxicology: humoral assessment of neurotoxicity and autoimmune mechanisms. Environ Health Perspect 1999; 107(Suppl 5): 767-775.
  172. Tan X. X., Tang C., Castoldi A. F., Manzo L., Costa L. G. Effects of inorganic and organic mercury on intracellular calcium levels in rat T lymphocytes. J Toxicol Environ Health 1993; 38(2):
  173. 159-170.
  174. 167. Elferink J. G. Thimerosal: a versatile sulfhydryl reagent, calcium mobilizer, and cell function-modulating agent. Gen Pharmacol 1999; 33(1): 1-6.
  175. 168. Atchison W. D., Joshi U., Thornburg J. E. Irreversible suppression of calcium entry into nerve terminals
  176. by methylmercury. JPharmacol Exp Ther 1986; 238(2): 618-624.
  177. 169. Chu C. C., Huang C. C., Ryu S. J., Wu T. N. Chronic inorganic mercury induced peripheral neuropathy. Acta Neurol Scand 1998; 98(6): 461-465.
  178. 170. Coccini T., Randine G., Candura S. M., Nappi R. E., Prockop L. D., Manzo L. Low-level exposure to methylmercury modifies muscarinic cholinergic receptor binding characteristics in rat brain and lymphocytes: physiologic implications and new opportunities in biologic monitoring. Environ Health Perspect 2000; 108(1): 29-33.
  179. 171. Volterra A., Trotti D., Cassutti P., et al. High sensitivity of glutamate uptake to extracellular free arachidonic acid levels in rat cortical synaptosomes and astrocytes. J Neurochem 1992; 59(2): 600-606.
  180. Lombard J. Autism: a mitochondrial disorder? Med Hypotheses 1998; 50(6): 497-500.
  181. Gupta S., Aggarwal S., Rashanravan B., Lee T. Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism. J Neuro-immunol 1998; 85(1): 106-109.
  182. Singh V. K. Plasma increase of Interleuken-12 and Interferon-gamma. Pathological significance in autism. J Neuro-immunology 1996; 66: 143-145.
  183. Fombonne E., Roge B., Claverie J., Courty S., Fremolle J. Microcephaly and macrocephaly in autism. J Autism Dev Disord 1999; 29(2): 113-119.
  184. 176. Carlsson M. L. Hypothesis: is infantile autism a hypoglutamatergic disorder? Relevance of glutamate – serotonin interactions for pharmacotherapy. J Neural Transm 1998; 105(4-5): 525-535.
  185. Gillberg C., Svennerholm L. CSF monoamines in autistic syndromes and other pervasive dev. disorders of early childhood. Br J Psychiatry 1987; (151): 89-94.
  186. Ernst M., Zametkin A. J., Matochik J. A., Pascualvaca D., Cohen R. M. Low medial prefrontal dopaminergic activity in autistic children. Lancet 1997; 350(9078): 638.
  187. 179. Leboyer M., Philippe A., Bouvard M. et al. Whole blood serotonin and plasma beta-endorphin in autistic probands and their first-degree relatives. Biol Psychiatry1999; 45(2): 158-163.
  188. Ornitz E. M. Neurophysiologic studies of infantile autism. Handbook of Autism and Pervasive Developmental Disorders. John Wiley & Sons, Inc., 1987: 148-165.
  189. Schuler A. L. Thinking in autism: differences in learning and development. In: Quill K. A., ed. Teaching Children with Autism. Florence, KY: Delmer Publishers, 1995: 11-32.